В работе с детьми старшего дошкольного возраста повышается роль словесных приемов обучения. Указания и пояснения педагога направляют и планируют деятельность детей. Давая инструкцию, он учитывает, что дети знают и умеют делать, и показывает только новые приемы работы. Вопросы педагога в ходе объяснения стимулируют проявление детьми самостоятельности и сообразительности, побуждая их искать разные способы решения одной и той же задачи: «Как еще можно сделать? Проверить? Сказать?» [10, с.102 ]
Детей учат находить разные формулировки для характеристики одних и тех же математических связей и отношений. Существенное значение имеет отработка в речи новых способов действия. Поэтому в ходе работы с раздаточным материалом педагог спрашивает то одного, то другого ребенка, что, как и почему он делает. Один ребенок может выполнять в это время задание у доски и пояснять свои действия. Сопровождение действия речью позволяет детям его осмыслить. После выполнения любого задания следует опрос. Дети отчитываются, что и как они делали и что получилось в результате. [10, с.108]
По мере накопления умения выполнять те или иные действия ребенку можно предложить сначала высказать предположение, что и как надо сделать, (построить ряд предметов, сгруппировать их и пр.), а потом выполнить практическое действие. Так учат детей планировать способы и порядок выполнения задания. Усвоение правильных оборотов речи обеспечивается многократным их повторением в связи с выполнением разных вариантов заданий одного типа.
В старшей группе начинают использовать словесные игры и игровые упражнения, в основе которых лежат действия по представлению: «Скажи наоборот!», «Кто быстрее назовет?», «Что длиннее (короче)?» и др. Усложнение и вариантность приемов работы, смена пособий и ситуаций стимулируют проявление Детьми самостоятельности, активизируют их мышление. Для поддержания интереса к занятиям педагог постоянно вносит в них элементы игры (поиск, угадывание) и соревнования: «Кто быстрее найдет (принесет, назовет)?» и т. д. [12, с.110 ]
Игра начала успешно использоваться в обучении детей до школы с середины прошлого века. В исследованиях отечественных педагогов и психологов подчеркивалась многоплановая взаимосвязь и взаимовлияние игры и обучения. В играх актуализируется интеллектуальный опыт, конкретизируются представления о сенсорных эталонах, совершенствуются умственные действия, накапливаются положительные эмоции, которые повышают познавательные интересы дошкольников. [15, с.113]
В работе с детьми используются дидактические игры с народными игрушками - вкладышами (матрешки, кубы), пирамидами, в конструкции которых заложен принцип учета величины. На этот принцип обращается особое внимание детей: в большую матрешку можно поставить маленькую; в большой куб — маленький; чтобы сделать пирамиду, надо вначале вставить большое кольцо, затем поменьше и самое маленькое. С помощью этих игр дети упражняются в нанизывании, вкладывании, собирании целого из частей; приобретали практический, чувственный опыт различения величины, цвета, формы предмета, учились обозначать эти качества словом. Дидактические игры используются как для закрепления, так и для сообщения новых знаний («Одевание кукол», «Покажи, что больше, а что меньше», «Чудесный мешочек», «Три медведя», «Что изменилось?», «Палочки в ряд», «Наоборот», «Сломанная лестница», «Чего не стало?», «Узнай по описанию» и др.). [29, с.257]
Игровые задачи решаются непосредственно - на основе усвоения математических знаний - и предлагаются детям в виде несложных игровых правил. На занятиях и в самостоятельной деятельности детей проводятся подвижные игры математического содержания («Медведь и пчелы», «Воробушки и автомобиль», «Ручейки», «Найди свой Домик», «В лес за елочками» и др.). [29, с.216 ]
При отработке предметных действий с величинами (сравнение путем наложения и приложения, раскладывание по возрастающей и убывающей величине, измерение условной меркой и др.) широко используются разнообразные упражнения. На начальных этапах обучения чаще практикуются репродуктивные упражнения, благодаря которым дети действуют по образцу воспитателя, что предупреждает возможные ошибки. Например, угощая зайцев морковкой (сравнение двух групп предметов путем наложения), дети точно копируют действия воспитателя, который угощает кукол конфетами. Несколько позже применяются продуктивные упражнения, в которых дети сами находят способ действия для решения поставленной задачи, используя имеющиеся знания. Например, каждому ребенку дают елочку и предлагают найти на столе воспитателя елочку такой же высоты. Имея опыт сравнения величины предметов путем наложения и приложения, дети путем примеривания находят елочку такой же высоты, как у них. [29, с221]
Перспективным методом обучения дошкольников математике на современном этапе является моделирование: оно способствует усвоению специфических, предметных действий, лежащих в основе понятия числа. Дети использовали модели (заместители) при воспроизведении такого же количества предметов (покупали в магазине шапок столько, сколько кукол; при этом количество кукол фиксировали фишками, так как поставлено условие - кукол в магазин брать нельзя); воспроизводили такую же величину (строили дом такой же высоты, как образец; для этого брали палочку такой же величины, как высота дома-образца, и делали свою постройку такой же высоты, как величина палочки). При измерении величины условной меркой дети фиксировали отношение мерки ко всей величине либо предметными заместителями (предметы), либо словесными (словами-числительными). [с.29, с.227]
Одним из современных методов обучения математике являются элементарные опыты. Детям предлагается, например, перелить воду из бутылочек разной величины (высокая, узкая и низкая, широкая) в одинаковые сосуды, чтобы определить: объем воды одинаков; взвесить на весах два куска пластилина разной формы (длинная колбаска и шар), чтобы определить, что они одинаковые по массе; расставить стаканы и бутылочки один к одному (бутылочки стоят в ряд далеко друг от друга, а стаканы в кучке близко друг к другу), чтобы определить, что их количество (равное) не зависит от того, сколько места они занимают.
Для формирования полноценных математических представлений и для развития познавательного интереса у дошкольников очень важно наряду с другими методами использовать занимательные проблемные ситуации. Жанр сказки позволяет соединить в себе и собственно сказку, и проблемную ситуацию. Слушая интересные сказки и переживая с героями, дошкольник в то же время включается в решение целого ряда сложных математических задач, учится рассуждать, логически мыслить, аргументировать ход своих рассуждений.
Таким образом, для успешного овладения детьми старшего дошкольного возраста математическими знаниями необходимо использовать все многообразие методов и приемов обучения математике как традиционных так и инновационных. В главе II своей работы мы представляем комплекс традиционных методов и приемов (дидактические и логические игры, решение математических задач) в сочетании с инновационными (моделирование, математические сказки, эксперименты).
1.2 Педагогические условия математического развития детей старшего дошкольного возраста
Педагогические условия – это создание благоприятной морально-психологической атмосферы в отношениях между педагогом и ребенком, в коллективе детей, а так же педагогическая развивающая среда, окружающая ребенка в дошкольном учреждении.
Все современные программы и технологии дошкольного воспитания выдвигают в качестве основной задачу развивать личность ребенка, его умственные, духовные и физические способности. С нашей точки зрения, прогрессивное развитие ребенка может осуществляться в условиях свободного выбора, которые позволяют ему преобразовываться из объекта в субъект собственной деятельности. Отсюда вытекают задачи руководства процессом развития и образовательной работы с детьми.
В первом случае, не давая способов ориентировки в готовом виде, вызывать потребность в поиске и таким образом предоставлять возможность для саморазвития и самовоспитания. Во втором - создавать благоприятные условия для реализации своих возможностей посредством овладения в доступной форме систематизированным человеческим опытом (материальной и духовной культурой), который отражает существенные связи явлений действительности (Н. Н. Поддьяков). Наиболее общие формы существования мира - пространство и время. [ 5, с. 12]
Чтобы развить у ребенка умственные способности логического типа, нужно научить его выделять основные существенные параметры объекта и его отношения. Следовательно, педагогу необходимо организовать деятельность, которая будет направлена на систематизацию объектов по их внешним свойствам, предусмотреть четкое восприятие самих объектов и нахождение в них сходства и различия. В связи с этим содержание обучения должно включать задачи на действия, объединяющие объекты в группы на основе как сходства, так и различия. Прямые отношения (сходство) необходимо изучать в связи с обратными (различия). Постоянство и изменение в их единстве открывают детям на уровне интуиции обратимость, что является основой логического мышления.
На уровне наглядно-образного и интуитивного мышления дошкольникам доступны самые общие формы существования мира; классы и отношения остаются одновременно и пространственными совокупностями, и пространственно-временными отношениями. Мы разделяем точку зрения, согласно которой логической может быть не только мысль дискурсивная, но и интуитивная, для которой время не необходимое условие. [11, с.43 ]