Смекни!
smekni.com

работа (стр. 5 из 7)

В своей работе, описанной в главе II нами описаны условия созданные в ДОУ № 2 для успешного развития математических знаний у детей старшего дошкольного возраста, прежде всего это разнообразная совместная деятельность воспитателя и детей, направленная на решение логических и математических задач, а так же различные наглядные пособия, включенные в уголок занимательной математики (игры, пособия, модели и т.д.).

Выводы по I главе

Изучение психолого-педагогической литературы, практики работы до­школьных учреждений убеждают в необходимости дальнейшего исследования вопроса организации процесса обучения математике детей дошкольного воз­раста, разработки и внедрения инновационных технологий. Область математических представлений, которая складывается у детей до школы, становится фундаментом для дальнейшего математического образо­вания и влияет на его успешность.

В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые. В формировании элементарных математических представлений ведущим принято считать практический метод, включающий в себя: игры, элементарные опыты, моделирование, решение проблемных ситуаций. Сущность данного метода заключается в организации практической деятельности детей, направленной на усвоение определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т.д.) на базе которых возникают математические представления.

Для успешного математического образования дошкольников необходимо создание определенных условий, благодаря которым облегчается процесс усвоения математических знаний. В череде необходимых условий на первом месте стоит организация уголка занимательной математики в группах детского сада, в который включены проблемные математические задачи, задания по математическому моделированию, описание экспериментов и т.д. Исходя из опыта работы в дошкольном учреждении нами выяснено, что ведущим условием формирования математических представлений в старшем дошкольном возрасте является целостная система, со­стоящая из задач и адекватного образовательного содержания, соответствую­щих возрасту детей и их интеллектуальным способностям.

Глава II. Проект работы по математическому развитию детей старшего дошкольного возраста

2.1 Изучение опыта работы воспитателей ДОУ по математическому развитию детей старшего дошкольного возраста

Ребенок старшего дошкольного возраста отличается активностью в по­знании окружающего, проявляет интерес к математике. У него начинают скла­дываться представления о свойствах предметов: величине, форме, цвете, соста­ве, количестве; о действиях, которые можно производить с ними, - уменьшить, увеличить, разделить, пересчитать, измерить.

Накопленный чувственный и интеллектуальный опыт ребенка может быть объемным, но неупорядоченным, неорганизованным. Направить его в нужное русло, сформировать частные и обобщенные способы познания и необ­ходимо в процессе обучения и познавательного общения. Все это служит фун­даментом дальнейшего математического образования детей.

На кафедре педагогики и психологии дошкольного воспитания МГПУ педагогами Г.А. Корнеевой, Э.Ф. Николаевой, Е.В. Родиной была создана программа обучения детей математике, в которой были определены наиболее эф­фективные методы и формы обучения. Программа была апробирована в МДОУ № 23 города Нижний Новгород.

В программе нашла отражение идея Л. С. Выготского о том, что только то обучение является хорошим, которое «забе­гает» вперед развития ребенка. Руководствуясь идеей развивающего обучения, мы стремились ориентироваться не на достигнутый детьми уровень развития, а чуть забегать вперед, чтобы дети могли приложить некоторые усилия для ов­ладения математическим материалом. [18, с.46]

Центральное место в программе занимает содержание, направленное на формирование понятия «число». Это одно из основных понятий, с которого на­чинается познание ребенком математики. Материал, включенный в содержание и направленный на развитие у де­тей понятия числа, включает три этапа.

1-й этап - дочисловая деятельность (3-4,5 года). На данном этапе работы решаются следующие задачи: выделять величину предмета и определять ее словом (длинный - короткий, большой - маленький, тяжелый - легкий и т. д.); сравнивать величину, пользуясь приемами наложения и приложения, и резуль­таты сравнения определять словами (выше - ниже, больше - меньше, равные по количеству и т. д); раскладывать (сериировать) предметы по возрастающей и убывающей величине; группировать (классифицировать) предметы по величи­не.

2-й этап - введение ребенка в мир числа на основе выполнения действий с величинами (4,5-5,5 лет). На данном этапе дети учатся сравнивать величину предметов с помощью «мерки», равной одному из сравниваемых предметов; уравнивать величину предметов, пользуясь условной меркой, определяя резуль­тат измерения в предметной форме (мерка уложилась по длине ленты столько раз, сколько у нас кругов), а затем в словесной форме с помощью слов-числительных («Мерка уложилась пять раз»); понимать количественное и по­рядковое значение числа; понимать независимость величины (непрерывной и дискретной) от других признаков: цвета, пространственного расположения и др.; измерять объем жидких и сыпучих тел, массу (вес) предметов; понимать принцип сохранения величины (протяженности, количества, объема, массы); раскладывать и группировать предметы по величине.

3-й этап — совершенствование понятия о числе (5,5-6,5 лет). Данный этап работы включает решение следующих задач: научить понимать отношение между числами (5 меньше 6 на 1; 8 больше 7 на 1); производить счет по разным основаниям (например, дана полоска, разделенная на восемь квадратов; если производить счет по одному квадрату, получится число 8, а если по два, полу­чится число 4); понимать функциональную зависимость между величиной, мер­кой и числом (при измерении одной и той же величины разными мерками по­лучаются разные числа, и наоборот); освоить принцип сохранения величины (количество, протяженность, объем и др.).

В дальнейшем старшие дошкольники (6,5-7 лет) осваивают выполнение арифметических действий (сложение и вычитание) с числами. Лучшим спосо­бом осознанного их усвоения является решение арифметических задач, а затем и решение примеров. [18, с.47]

Программа включает разделы «Геометрические фигуры», «Пространст­венные отношения» с учетом современных исследований (Н. Г. Белоус, Л. А. Венгер, В. Г. Житомирский, Т. В. Лаврентьева, 3. А. Михайлова, Р. Л. Непом­нящая, Л. Н. Шеврин и др.). Такое содержание, на наш взгляд, создает целост­ную систему математического обучения дошкольников, на основе которой бу­дет осуществляться подготовка к усвоению школьной математики.

В процессе работы педагогами МДОУ №23 города Нижний Новгород использовались разнообразные методы обуче­ния (практические, наглядные, словесные). Приоритетное место отводилось практическим методам (игра, упражнение, моделирование, элементарные опы­ты).

В работе с детьми использовались дидактические игры с народными иг­рушками с помощью этих игр дети упражнялись в нанизывании, вкладывании, собирании целого из частей; приобретали практический, чувственный опыт различения величины, цвета, формы предмета, учились обозначать эти качества словом.

Дидактические игры использовались как для закрепления, так и для сообщения новых знаний.

При отработке предметных действий с величинами (сравнение путем на­ложения и приложения, раскладывание по возрастающей и убывающей вели­чине, измерение условной меркой и др.) широко использовались разнообразные упражнения. На начальных этапах обучения чаще практиковались репродук­тивные упражнения, благодаря которым дети действовали по образцу воспита­теля, что предупреждало возможные ошибки. Например, угощая зайцев мор­ковкой (сравнение двух групп предметов путем наложения), дети точно копи­ровали действия воспитателя, который угощал кукол конфетами. Несколько позже применялись продуктивные упражнения, в которых дети сами находили способ действия для решения поставленной задачи, используя имеющиеся зна­ния. Например, каждому ребенку давали елочку и предлагали найти на столе воспитателя елочку такой же высоты. Имея опыт сравнения величины предме­тов путем наложения и приложения, дети путем примеривания находили елоч­ку такой же высоты, как у них.

При выполнении знакомого способа действия педагоги МДОУ №23 использовали словесные инструкции. Посредством ответов на вопросы педагога ребенок повторяет ин­струкцию, например, говорит, какую полоску надо положить сначала, какую потом. [18, с.47]

Обеспечению принципа наглядности способствует дидактический мате­риал. В средней и старшей группах наряду предметной и иллюстративной на­глядностью используются геометрические фигуры, схемы, таблицы. Успех обучения во многом зависит от организации учебного процесса. Хотелось бы обратить внимание на ряд положений. Обучение должно осуществляться как на занятиях, так и в процессе са­мостоятельной деятельности детей.

На занятиях обязательно должна происходить смена деятельности: вос­приятие информации педагога, активная деятельность самих детей (работа с раздаточным материалом) и игровая деятельность (игра является обязательным компонентом занятия; иногда все занятие строится в форме игры).

Дифференцированное обучение рассматривалось педагогами МДОУ №23 как создание оптимальных условий для выявления способностей каждого ребенка. Такое обучение предполагает оказание свое­временной помощи детям, испытывающим трудности при усвоении математи­ческого материала, и индивидуальный подход к детям с опережающим развити­ем. Такая работа требует специальной организации детей на занятиях. Проводились занятия по подгруппам, чтобы проследить способ выполнения дей­ствия каждым ребенком. Не исключались традиционные коллективные занятия со всей группой.