Смекни!
smekni.com

Данная работа содержит вариант расчёта комбинированной сау выбор передаточной функции объекта управления, выбор параметров настроек регулятора и комп (стр. 4 из 4)

Цифровые сигналы обозначены на схеме как переменные с индексами y[n], g[n], f[n], причём y[n] = y(nTд); g[n] = g(nТд); f[n] = f(nТд). Интервал дискретности Тд выбирается из условия: Тд £ Ти / 20, где Ти – постоянная времени интегрирования непрерывного регулятора. В нашем случае: Тд = 5,22/20 = 0,26с.


f(t)


f[n]


g(t) g[n] u[n] u(t) y(t)

y[n]


Рис.6.1. Структурная схема системы НЦУ.

Алгоритм работы ЭВМ, осуществляющий автоматическое регулирование, может быть получен из уже найденного закона регулирования непрерывного

регулятора [3].

Принимаем за исходный ПИ-закон:

(6.1)

где u1(t) – регулирующее воздействие на объект; e(t) – сигнал ошибки,

e(t) = g(t) – y(t); Кр и Ти – параметры настройки непрерывного ПИ-регулятора.

Замена непрерывных сигналов цифровыми, взятыми в дискретные моменты, может быть проведена по следующей схеме:

e(t) ® e[n]; u1(t) ® u1[n];

Поэтому ПИ-закон регулирования в цифровой форме имеет вид:

(6.2)

Более удобна для реализации на ЭВМ другая, так называемая скоростная форма этого алгоритма. Для её получения запишем значение u1 на предыдущем интервале дискретности:

Вычитая его из предыдущего, получим:

Отсюда:

После подстановки e[n] = g[n] – y[n]; e[n-1] = g[n] – y[n-1] получим:

Подставив значения всех постоянных коэффициентов, получим:

(6.3)

Алгоритм работы ЭВМ, осуществляющий компенсацию возмущающего воздействия, может быть получен на основании передаточной функции компенсатора следующим образом [3].

Пусть, например, сигнал компенсатора u2(t) подаётся на вход объекта (вместе с сигналом регулирования u1) и пусть передаточная функция компенсатора:

. (6.4)

Тогда соответствующее операторное выражение имеет вид:

и в дифференциальной форме записывается в виде:

Переход к цифровым сигналам, взятым в дискретные моменты времени, может быть проведён по следующей схеме:

В результате перехода получим:

Отсюда:

.

Подставив значения всех постоянных коэффициентов, получим:

(6.5)

Окончательно управляющее воздействие цифрового регулятора с компенсацией возмущений получают суммированием регулирующего u1(t) и компенсирующего u2(t) воздействий:

(6.6)

(6.7)

Полученное выражение используется для составления программы НЦУ.

Алгоритм непосредственного цифрового регулирования (рис.6.2), кроме расчёта управляющего воздействия, выполняет следующие дополнительные функции:

1) анализ входных сигналов и вычисленных управляющих сигналов на корректность (на схеме алгоритма – “Анализ”);

2) сигнализация о некорректных значениях и недопустимых отклонениях (на схеме – “Сигнализация”).


Рис.6.2. Схема алгоритма НЦУ.

7. Список используемой литературы.

1. Теория автоматического управления. Расчёт САУ горного производства с использованием ЭВМ: Метод, указания для студентов спец. 2105 / ЛГИ Сост.: В.И. Златкин, С.В. Стороженко. Л., 1991г. 46 с.

2. Лукас В.А. Основы теории автоматического управления. Л.: Недра, 1977г.376 с.

3. Медведев Р.Б., Бондарь Ю.Д., Романенко В.Д. АСУ в металлургии. М.: Металлургия, 1987г. 253 с.

4. Марюта А.Н., Качан Ю.Г., Бунько В.А. Автоматическое управление технологическими процессами обогатительных фабрик. М.: Недра, 1983г. 248 с.

5. Теория автоматического управления: Программа, методические указания, контрольные задания и задания к курсовой работе / ЛГИ Сост.: В.И. Златкин, С.В. Стороженко. СПб, 1992г. 40 с.

6. Конспект лекций по ТАУ Стороженко С.В.