Группа под названием «диоксин» – это 419 различных соединений. Из них 28 чрезвычайно опасны, но по токсичности они сильно различаются – от сверхтоксичного 2,3,7,8-ТХДД до токсичного октахлордибенофурана или еще менее токсичных ПХБ. В природе, в выбросах промышленных предприятий эти соединения перемешаны в самых различных сочетаниях, что делает проблему их распознавания чрезвычайно трудной (как правило, в настоящее время для анализа диоксинов используют технику хромато-масс-спектрометрии).
Диоксины – не промышленный продукт, его выбрасывают в воздух и в воду химические производства и целлюлознобумажные комбинаты, но главные выбросы дают мусоросжигательные заводы.
Структура мусора в разных странах имеет свои особенности. Так, в Голландии сжигание больничного мусора дает только 4 г диоксинов в год, тогда как в других странах Запада и в США это мощный источник диоксинов.
В России всего несколько МСЗ, тем не менее, мусорные свалки горят, и диоксины все-таки образуются.
Ярким примером биологических последствий действия диоксинов являются последствия использования химического оружия во время войны во Вьетнаме – необратимое уничтожение первичных тропических лесов. В дефолиантах, которые распыляли летчики США, была незначительная примесь побочного продукта, который образовывался при производстве гербицида 2,4,5-Т. Этот гербицид был основой всех распылявшихся агентов: «Оранжевого», «Пурпурного», «Розового», «Зеленого» и других цветов, а примесью были диоксины. США использовали в войне 91 тыс. тонн гербицидов, из них 55 тыс. тонн содержали диоксины – 170 кг (в смесях было от 0,5 до 47 мг/кг токсичного тетрахлордиоксина).
Всего было обработано 1,6 млн га, пострадали свыше 2 млн человек. Это явление носит название геноцида.
У людей, подвергшихся воздействию диоксинов, искажены иммунные, компенсаторные механизмы организма, биохимические характеристики, проявляются неадекватные реакции организма, например, на лекарственные препараты. Установлено, что даже при отсутствии диоксинов в крови «диоксиновый фактор» продолжает действовать. По данным 1995 г. диоксиновое отравление вызывают более 19 болезней.
Диоксины поражают в первую очередь женщин и детей.
Журналистское прозвище диоксинов – химический СПИД.
В 1999 году Лионская комиссия по канцерогенным веществам, а вслед за ней US EPA признали диоксин канцерогеном для человека. Согласно оценке US EPA риск для заболевания раком составляет 1:1000 (из тысячи заболеет 1 человек, а из группы в 10 млн – 10 тысяч).
Для оценки степени опасности диоксинов используют «фактор токсичности», с использованием «Интернациональной шкалы факторов эквивалентной токсичности» I-TEF. Фактор – это коэффициент, на который умножают концентрацию найденного токсичного диоксина, чтобы получить «эквивалент токсичности». За единицу принят коэффициент токсичности 2,3,7,8-ТХДД.
Общая токсичность для смеси также называется эквивалентной токсичностью (ЭТ, I-TEQ).
Больше всего диоксинов человек получает с пищей (конкретно, в западных странах – с мясом и молочными продуктами, для России – нет данных). В России установлена допустимая суточная доза диоксинов – 10 пкг/кг веса человека в день. Норма загрязнения воды, принятая в России, равна 20 пкг диоксинов в литре.
В группу риска людей, подвергающихся особой опасности от поражения диоксинами, входят: рыбаки или лица, употребляющие в пищу много рыбы, рабочие некоторых химических производств, ветераны войны во Вьетнаме, вьетнамские крестьяне, пострадавшие от катастроф с выбросами диоксинов, грудные дети.
Не все пути поступления диоксинов в пищу известны.
Кроме пищи диоксины поступают в организм человека также из воздуха и с пылью (2,2 и 0,8 пг/день соответственно). Питьевая вода не вносит заметного вклада в общую сумму поступающих в организм диоксинов.
Проблема диоксинов в России по своей важности стоит в одном ряду с радиоактивным заражением как по масштабам загрязнения, так и по поражающему значению. Главная опасность диоксинов состоит не в острой токсичности, а в длительном трансформирующем действии на биосферу. В присутствии широко распространенных в природе синергистов экосистемы начинают разрушаться уже при содержании нескольких нанограмм на килограмм почвы и долей нанограмма в литре воды. По некоторым расчетам, в настоящее время в природу выброшено несколько сотен тысяч диоксинов, что объясняет наблюдаемые в последние десятилетия катастрофические потери органического вещества в биосфере, резкое снижение качества генофонда и прогрессирующий иммунодефицит у всех высших организмов.
Нефть. В отличие от многих антропогенных воздействий, нефтяное загрязнение оказывает комплексное воздействие на окружающую среду и вызывает ее быструю отрицательную реакцию. Так, хронические разливы нефти, нефтепродуктов, соленых пластовых вод, выносимых эксплутационными скважинами вместе с нефтью и газом, приводят к уменьшению продуктивности земель и деградации ландшафтов. Воздействие нефтепроводов на почвенный покров проявляется в основном в механическом нарушении почвенного покрова при строительстве и ремонтных работах трубопроводов и химическом загрязнении почв при авариях.
Для оценки нефти как загрязняющего вещества природной среды предложено использовать следующие признаки: содержание легких фракций, содержание парафинов, содержание серы.
Летучие ароматические углеводороды (легкие фракции нефти) – толуол, ксилол, бензол, нафталин и др., обладающие повышенной токсичностью для живых организмов, легко разрушаются и удаляются из почвы. Поэтому период острого токсического действия сравнительно небольшой. Парафины не оказывают сильного токсического действия на почвенную биоту или планктон и бентос морей и океанов, но благодаря высокой температуре отвердения существенно влияют на физические свойства почвы, изменяют ее структуру. Содержание серы свидетельствует о степени опасности сероводородного загрязнения почв и поверхностных вод.
Легкая фракция нефти (tкип < 2000 С), куда входят наиболее простые по строению низкомолекулярные метановые (алканы), нафтеновые (циклопарафины) и ароматические углеводороды – наиболее подвижная часть нефти.
Большую часть легкой фракции составляют метановые углеводороды с большим числом углеродных атомов от 5 до 11. Нормальные (неразветвленные) алканы составляют в этой фракции 50–70%. Метановые углеводороды легкой фракции, находясь в почвах, водной и воздушной средах, оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеродной цепью. Эти углеводороды лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цитоплазменные мембраны организма. Нормальные алканы, содержащие в цепочке менее 9 атомов углерода, большинством организмов не ассимилируются, хотя могут быть окислены. Их токсичность ослабляется в присутствии нетоксичного углеводорода, который уменьшает общую растворимость алканов.
Будучи смесью различных по строению и свойствам компонентов, нефть разлагается очень медленно – процессы деструкции одних соединений ингибируются другими, при трансформации отдельных компонентов происходит образование трудноокисляемых форм и т.д.
1.2.3 Механизмы и эффекты токсического воздействия поллютантов на организм человека
Общие механизмы токсичности металлов. Катионы металлов могут формировать координационно-ковалентные связи с широким классом молекул (лиганды). Большинство лигандов, имеющих биологическое значение (белки, нуклеиновые кислоты), содержат в молекуле кислород-, азот-, серусодержащие, электрон-донорские группы, с которыми и взаимодействуют металлы. Последствия взаимодействия металлов с лигандами многообразны. Прежде всего, это разрыв водородных связей внутри макромолекулы, замещение других металлов в связи с лигандами и как следствие этого - изменение третичной структуры комплекса, приводящее к изменениям их биологических свойств: угнетению активности энзимов, нарушению транспортных свойств и т.д. Присоединение металлов к лигандам мембранных структур, прежде всего, приводит к нарушению процессов активного или пассивного трансмембранного транспорта. Взаимодействие с лигандами нуклеиновых кислот потенциально может повлиять как на процессы транскрипции, так и трансляции, и лежать в основе мутагенного и канцерогенного действия определенных металлов. Угнетение энзимов, участвующих в процессе репарации ДНК, также может иметь значение в развитии мутагенеза и канцерогенеза. У каждого металла свой характерный спектр констант сродства к различным лигандам в различных тканях. Металлы, имеющие повышенное сродство к SH-группам, относятся к числу так называемых тиоловых ядов (ртуть, мышьяк и т.д.).
Если металл взаимодействует со структурами энзима, расположенными вне активного центра, но влияющими на его конформацию (следовательно, и на активность), возможно неконкурентное ингибирование. Так, хотя ртуть не взаимодействует с активным центром гемоглобина, связывающим кислород, она существенно изменяет характер кривой диссоциации оксигемоглобина, нарушая его третичную структуру.
Действие металлов на белки может приводить к нарушению их третичной структуры. Поскольку лиганд (белок), способный связывать катион, окружен и другими молекулами, такое взаимодействие носит лишь отчасти специфический характер.
Изменение структуры белков – необходимый этап действия металлов как аллергенов. Сами по себе металлы и их соли не являются антигенами, т.е. по отношению к ним не происходит специфической иммунной реакции, но, подвергаясь в организме различным химическим превращениям и вступая в соединения с белками, они приобретают новые свойства, в том числе способность стимулировать иммунокомпетентную систему. В химическом соединении с белком металл играет роль гаптена и определяет специфичность комплексного антигена.