Смекни!
smekni.com

Учебно-методическое пособие Часть 3 Технология электромонтажных работ Одобрено методической комиссией электротехнического факультета Гомель 2010 (стр. 8 из 26)

При магистральном способе электроснабжения прокладывают одну линию, к которой в разных местах подключаются потребители.

Примером магистрального электроснабжения может служить высоковольтно-сигнальная линия автоблокировки. Она прокладывается вдоль железнодорожных путей для питания устройств автоматики на перегонах и промежуточных станциях.

При неисправности какого-нибудь отрезка питающей магистрали все потребители, подключённые дальше места повреждения, оказываются обесточенными. Для повышения надёжности электроснабжения магистраль питают с двух концов либо замыкают в кольцо.

Радиальный способ электроснабжения предусматривает прокладку к каждому потребителю отдельной линии, что требует больших затрат труда и материалов.

При построении электрических сетей от трансформаторной или распределительной подстанции в разные стороны прокладывают магистральные линии, которые могут разветвляться. Для важных потребителей кабельные линии дублируют, а также предусматривают резервные линии для подключения к другим магистралям и даже к другим питающим подстанциям.

Потребителями энергии – электроприёмниками являются: промышленные, строительные, транспортные, торговые, сельскохозяйственные и иные предприятия, культурно-зрелищные сооружения, а также жилые посёлки и жилые микрорайоны городов.

По надёжности электроснабжения электроприёмники делятся на три категории:

К третьей относятся небольшие поселки, газифицированные дома высотой 5 и менее этажей и т. п. Электроприёмники третьей категории получают питание по одной воздушной или кабельной линии с перерывами не более суток.

Ко второй относятся электроприёмники, перерыв в электроснабжении которых связан с массовым срывом выпуска продукции, простоем рабочих, механизмов и промышленного транспорта, нарушением нормальной деятельности значительного числа городских жителей.

К этой категории относятся: жилые здания от 6 до 16 этажей включительно, а также меньшей этажности, но оборудованные стационарными кухонными электроплитами, лечебные и детские учреждения, школы и другие учебные заведения; силовые установки, технология которых ограничивает допускаемые перерывы в электроснабжении, столовые и кафе с числом посадочных мест от 100 до 500, магазины с площадью торгового зала от 220 до 1800 м2 и т. п.; группы городских потребителей с нагрузкой от 300 до 10000 кВА для кабельных сетей и от 1000 кВА и более для воздушных сетей.

Для питания электроприёмников второй категории рекомендуется иметь две линии, однако допускается и одна. Обычно, если питание осуществляется по воздушной ЛЭП, то используется одна линия, если по кабелю – подключаются две кабельные линии. Перерыв в работе таких потребителей допустим на время включения резервного питания дежурным персоналом, либо на время устранения неисправности питающей линии выездной оперативной бригадой.

К первой относятся электроприёмники, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение особо важных элементов городского хозяйства.

В городских электрических сетях к I категории относятся: электроприёмники театров, крупных кинотеатров, стадионов, универмагов с площадью торгового зала свыше 1800 м2 и т. п., сооружений с массовым скоплением людей, действующих при искусственном освещении, комплексы электроприёмников особых лечебных помещений (операционных блоков больниц и родильных домов, пунктов неотложной помощи и т. п.); технические и силовые электроприёмники жилых зданий выше 16 этажей (пожарные насосы, лифты, средства автоматического дымоудаления), аварийное освещение лестничных клеток, коридоров, вестибюлей, холлов, заградительные огни на кровлях зданий высотой 50 м и более, а также электроприёмники технических и силовых установок узлов радиосвязи, телеграфа, телефонных, водопроводных и канализационных станций и групп городских потребителей с общей нагрузкой более 10000 кВА.

Электроприёмники первой категории должны обеспечиваться электроэнергией от двух независимых источников питания. Перерыв в электропитании таких приёмников допустим только при автоматическом включении резервного питания (АВР), т. е. на время переключения питающей линии или запуска автоматизированного дизель-генератора.

В первой категории электроприёмников выделяется особая группа, бесперебойная работа которой необходима для безаварийной остановки производства во избежание угрозы для жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования, а также для обеспечения надёжной работы аппаратуры связи. Кроме двух питающих линий потребители особой группы обязательно требуют автономного источника питания. При аварии в питающей сети потребители особой группы переводятся на питание от дизель-генераторной установки или от аккумуляторной батареи либо непосредственно, либо через инвертор, преобразующий энергию постоянного тока в сетевое напряжение переменного тока.

2.1 Трёхфазная система электроснабжения

В конце позапрошлого века великий русский ученый Михаил Осипович Доливо-Добровольский разработал и начал внедрять в Германии трёхфазную систему электроснабжения переменным током. В это же время в Америке великий чешский ученый Никола Тесла разработал и начал внедрять двухфазную систему переменного тока. Почему для электроснабжения понадобился именно переменный ток?

Первые маленькие электростанции были постоянного тока и строились непосредственно на месте потребления электроэнергии, их генераторы приводились в действие паровыми машинами. Затем стали использовать энергию воды и строить гидроэлектростанции, достаточно удаленные от потребителей. К тому времени, когда потребовалось передавать энергию от гидроэлектростанций на расстояние десятки и сотни километров, уже было налажено массовое производство генераторов и двигателей постоянного тока. Однако для того чтобы передавать электроэнергию с большой мощностью (а мощность – это скорость передачи или преобразования энергии) необходимо обеспечить большое значение произведения силы тока на напряжение.

Для увеличения силы тока требуется увеличивать сечение проводов, а делать это тяжело и дорого. Для увеличения напряжения особых препятствий как будто нет: 1 мм воздушного промежутка в нормальных условиях выдерживает напряжение 2 кВ, а 10 мм – соответственно уже 20 кВ. Изоляция жил кабеля также обладает большой электрической прочностью. Таким образом, напряжение линии электропередачи без особых сложностей может быть увеличено до десятков и сотен киловольт. Однако, что делать потребителю с таким высоким напряжением, к тому же смертельно опасным для жизни? Задача преобразования, т. е. увеличения и уменьшения напряжения постоянного тока на том этапе развития техники не могла быть решена. Электротехника постоянного тока зашла в тупик, и началось интенсивное развитие устройств переменного тока.

В 80-х годах 19 века великий русский ученый Павел Николаевич Яблочков изобрел принцип трансформации переменного тока и создал первый трансформатор, представляющий собой железный сердечник и две обмотки провода различного сечения с разным числом витков. Затем группа венгерских ученых доработала конструкцию трансформатора практически до нынешнего вида, применив замкнутый сердечник. С помощью трансформаторов электрическая энергия повышается по напряжению и подается в высоковольтную линию электропередачи. На месте потребления устанавливаются понижающие трансформаторы.

Для чего нужны многофазные системы электропитания?

Более половины производимой электроэнергии потребляется электродвигателями – приводит в действие станки и другие механизмы. Для преобразования электрической энергии переменного тока в механическую можно использовать коллекторные двигатели, которые были разработаны для постоянного тока. Однако гораздо лучше применить специальные двигатели переменного тока, основанные на вращении магнитного поля. Вращающееся магнитное поле можно создать с помощью нескольких обмоток, пропуская по ним переменные токи, сдвинутые относительно друг друга по фазе. Если применить два источника, получим двухфазную систему. Если использовать три источника, получим трёхфазную систему. Двухфазная система не получила широкого распространения, трёхфазная система завоевала весь мир.

Трёхфазная система содержит три источника одинаковой частоты с одинаковыми значениями напряжений, сдвинутых по фазе на 120°, и трёхфазную линию электропередачи, к которой подключаются потребители. Для уменьшения потерь электроэнергия передается при повышенном напряжении, для чего на питающем конце линии устанавливается трёхфазный повышающий трансформатор. В местах подключения потребителей устанавливаются понижающие трансформаторы, также трёхфазные, от которых питается распределительная сеть.

Высоковольтные линии электропередачи напряжением 110 кВ и выше четырёхпроводные, провода обозначаются латинскими буквами: фазные A, B и C ( либо L1, L2 и L3) и нулевой N. Сети среднего напряжения (от 6 до 35 кВ), как правило, трёхпроводные. Сети питания потребителей (380/220 В) до недавнего времени были четырёхпроводными. Нулевой провод, имеющий надёжное соединение с землёй, называют «глухозаземлённой нейтралью». В обычной сети потребителей напряжение между каждой парой фазных проводов составляет 380 В (для такого напряжения используют термин «междуфазное» или «линейное»). Напряжение каждого фазного провода относительно нулевого провода N равно 220 В (такое напряжение называют «фазным»). Линейное напряжение больше фазного в

раз. При обозначении напряжения питания используют запись 380/220 В. Иногда применяют сеть электропитания напряжением 220/127 В либо 660/380 В. В настоящее время происходит переход от четырёх- к пятипроводным распределительным сетям. В четырёхпроводной сети глухозаземлённый нулевой проводник (в современном наименовании PEN) выполняет функции как рабочего, так и защитного. В пятипроводной системе нулевой рабочий проводник N и нулевой защитный проводник PE разделены. Это сделано с целью повышения электробезопасности, а также для того, чтобы авария одного потребителя не влияла на режим питания соседних.