Смекни!
smekni.com

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и (стр. 4 из 4)

Программой отводится на изучение геометрии по 2 урока в неделю, что составляет 70 часов в учебный год. Из них контрольных работ 6 часов, которые распределены по разделам следующим образом: «Четырехугольники» 1 час, «Площадь» 1 час, «Подобие треугольников» 2 часа, «Окружность» 1 час и 1 час отведен на итоговую административную контрольную работу.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Уроки геометрии интегрируются с информатикой. Доказательство геометрических фактов ведется в среде математическое лаборатории Живая математика.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Четырехугольники

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Основная цель — изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства тре­угольников, поэтому, полезно их повторить в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

2. Площадь

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Основная цель — расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для уча­щихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади.

Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

3. Подобные треугольники

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Основная цель — ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их примене­ния; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных от­резках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — си­нус, косинус и тангенс острого угла прямоугольного треуголь­ника.

4. Окружность

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель — расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, свя­занные с окружностью; познакомить учащихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматрива­ется много утверждений, связанных с окружностью. Для их усво­ения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах бис­сектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения сере­динных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

5. Повторение. Решение задач

Требования к уровню подготовки учащихся.

· В результате изучения курса геометрии 8-го класса учащиеся должны уметь:

· пользоваться геометрическим языком для описания предметов окружающего мира;

· распознавать геометрические фигуры, различать их взаимное расположение;

· изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

· вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

· решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

· проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

· решать простейшие планиметрические задачи в пространстве.

1. Учебно-методическое обеспечение для учителя:

· Геометрия, 7 -9: Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов и др. – М.: Просвещение, 2004 – 2008.

· Изучение геометрии в 7 - 9 классах: Метод. рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов и др. – М.: Просвещение, 1997 – 2007.

· .А..В. Фарков Тесты по геометрии – М : Экзамен,2009

· Ершова А.П. Голобородько В.В.,А.С.Ершова Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса.- М.: Илекса, - 2008

· Программы общеобразовательных учреждений. Геометрия 7-9 классы. Составитель Бурмистрова Т.А. – М.: «Просвещение», 2008.

· Е.М.Рабинович. Задачи и упражнения на готовых чертежах.7-9 классы. М.: Илекса, - 2003

2. Учебно-методическое обеспечение для ученика:

· Геометрия, 7 -9: Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов и др. – М.: Просвещение, 2004 – 2008.

· .А..В. Фарков Тесты по геометрии – М : Экзамен,2009

· Ершова А.П. Голобородько В.В.,А.С.Ершова Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса.- М.: Илекса, - 2008


п/п

8-9

10

3

4

5

6

7