В области графических станций уже сегодня нормой стали модели с производительностью 10 MIPS за умеренные цены, появились рабочие станции SUN производительностью 35 MIPS, фирма APOLLO представила персональный графический суперкомпьютер производительностью 100 MIPS. Передача больших объемов данных в мультимедиа системах требует высокой скорости и широкой полосы передачи. Развитие коммуникационных стандартов ISDN и FDD1 и оптиковолоконных линий связи в локальных сетях позволяют в значительной степени удовлетворить эти потребности. Вводу того, что информация в мультимедиа системах по своей природе представляет данные очень большого объема, проблема их хранения носит ключевой характер. Здесь прорывным решением является технология использования различных типов оптических дисков (CD - ROM - только читаемых, WORM - с однократной записью, CD-I с перезаписью). Достигнутые 500 Мбайт на сменном компакт-диске диаметром 5,25 дюйма уже сегодня являются удовлетворительным средством хранения данных в мультимедиа системах. Графика и изображения требуют адекватных средств отображения. Имеющиеся сегодня мониторы разрешением 1000х1000 с 256 цветами уже можно считать таковыми.
Мультимедиа-технологии опираются не только на достижения в аппаратных средствах, но и на технологические успехи в программном обеспечении, среди которых отметим два важных момента. Технология сжатия изображений является неотъемлемой частью при обработке образов и изображений. Достигнутые уровни сжатия изображений 120:1 позволяют на современных рабочих станциях выйти на работу в реальном времени, что необходимо в мультимедиа системах. Для манипуляции с данными мультимедиа систем важное значение имеют графические редакторы и человеко-машинные интерфейсы.
Хорошим примером реализации многих идей мультимедиа систем является компьютер NEXT, включающий монитор высокого разрешения, стираемый оптический диск и эффективный пользовательский интерфейс.
3.2. Классификация информационных технологии
В известной нам литературе до сих пор не рассматривались вопросы классификации информационных технологии. Следуя [25], рассмотрим вариант классификации, учитывающий возможность выделения типовых задач обработки информации, а также эффективность разработки, воспроизводства и применения технологии.
В составе основных операции по обработке информации, таких как создание, накопление, преобразование, передача, поиск, распределение, вывод и др., можно указать ряд автономных типовых функции обработки информации. К ним, в частности, относятся:
· математические вычисления;
· аналитические и символьные преобразования;
· математическое моделирование;
· алгоритмизация;
· программирование;
· обработка текстовой информации (занесение, изменение, контекстный поиск и др.);
· обработка табличной информации (занесение, вычисления и др.);
· деловая графика (диаграммы, схемы и др.);
· машинная графика (занесение, преобразование, выделение и др.);
· обработка изображений (ввод, преобразование, выдача, архивизация, передача и др.);
· обработка сигналов, в т.ч. звуковых (ввод, преобразование, хранение, вывод и др.);
· передача и распределение информации и др.
Информационные технологии можно классифицировать по следующим критериям:
· функционально-ориентированные технологии;
· предметно-ориентированные технологии;
· проблемно-ориентированные технологии.
Функционально-ориентированные информационные технологии предназначены для реализации одной из типовых относительно автономных задач обработки информации. Такие технологии могут обладать довольно высокой степенью универсальности и быть доступными для разработки и воспроизводства при минимальном участии будущего потребителя.
Предметно-ориентированные информационные технологии предназначены для решения конкретной специфической задачи в конкретной области. Они максимальным образом удовлетворяют частным требованиям данного применения и могут обладать наименьшей степенью универсальности. Как правило, их появление невозможно без участия будущего пользователя.
Однако часто удается обобщить требования со стороны ряда конкретных приложений и выделить некоторые типовые прикладные проблемы. Отсюда возникает понятие проблемно-ориентированной информационной технологии, которая занимает в определенной степени промежуточное положение между функционально-ориентированной и предметно-ориентированной технологией. Потенциальные пользователи такой технологии могут принять участие в ее разработке только на начальной стадии обобщения и типизации конкретных задач или конечной стадии - при разработке некоторых специализированных дополнений. Это позволяет основную часть технологии создавать автономно от пользователя и применять унифицированные технические решения.
В соответствии с выбранной классификацией к функционально-ориентированным информационным технологиям относятся:
· математические вычисления;
· аналитические и символьные преобразования;
· математическое моделирование;
· алгоритмизация;
· программирование;
· обработка текстовой информации;
· обработка табличной информации;
· деловая графика;
· машинная графика;
· обработка изображении;
· обработка сигналов;
· передача и распределение информации и др.
Проблемно-ориентированные технологии базируются на использовании:
· информационно-поисковых систем;
· баз данных и баз знаний;
· экспертных систем;
· систем автоматизации научных исследований;
· систем автоматизированного проектирования;
· систем автоматизации профессионального труда;
· систем автоматизации производства;
· обучающих систем;
· настольно-издательских систем;
· систем для перевода с одного языка на другой;
· телеконференций и др.
Примерами предметно-ориентированных информационных технологий могут служить технологии для:
· медицинских систем;
· общего и специального профессионального обучения;
· страховых, финансовых и банковских систем;
· средств массовой информации:
· средств социальной реабилитации;
· игровых и развлекательных систем;
· применений в быту.
В зависимости от поставленных целей возможно использование и других критериев классификации. Например, по типу применяемых ЭВМ, программных средств, средств передачи данных.
С целью обеспечения терминологической согласованности, исключения разночтении в литературе, и учитывая, что информатизация входит в повседневную жизнь общества, Институтом проблем информатики АН СССР создан банк данных, в котором содержится значительное количество терминов и их определение в области информатики и информационных технологий, а также сопутствующая терминология по другим научным дисциплинам.
Для приобретения необходимых данных следует обращаться по адресу:
117900, ГСП-1, Москва, В-334, ул. Вавилова, д. 30/6. Телефон: 938-66-65 Красавин А.Н.
1. Велихов Е.П. Информатика - актуальное направление развития советской науки. В сб. "Кибернетика. Становление информатики." - М.:Наука, 1986.
2. Велихов Е.П. Об организации в Академии наук СССР работ по информатике, вычислительной технике и автоматизации. Вестник АН СССР 1983, N 6.
3. Dictionary of Computing. Data Communications. Hardware and Software. Basics. Digital Electronics. John Wiley. 1983
4. Дородницын А.А. Информатика: предмет и задачи. В сб. " Кибернетика. Становление информатики." - М.: Наука, 1986.
5. Самарский А.А. Проблема использования вычислительной техники и развитие информатики. Вестник АН СССР 1985, N 3.
6. Моисеев Н.Н. Информатика: новые пути познания законов природы и общества. Вестник АН СССР 1985, N 5.
7. Сифоров В.И. Информатика и ее взаимодействие с философией и другими науками. Философская наука 1984, N 2.
8. Шемакин Ю.И. Введение в информатику.-М.:Финансы и статистика, 1985.
9. Информатика и компьютерная грамотность. ИПИ АН СССР. Отв. ред. академик Б.Н. Наумов. - М.:Наука, 1988.
10. Gruska Jozef. Vznik informatiky ako vedy a problemy jej sucasnedo rozvoja/ /Inf.syst.-1989.-18. N 3.- С. 221-231 (РЖ59. Информатика. М.: ВИНИТИ.-1990.-N 1.1.59.8.).
11. Свириденко С.С. Современные информационные технологии. -М.:Радио и связь, 1989.
12. Математический энциклопедический словарь. Гл. ред. Прохоров Ю.В.-М.:Сов. энциклопедия, 1988.
13. Поспелов Г.С. Искусственный интеллект - новая информационная технология. - М.:Наука, 1988.
14. Ильин В.Д. Система порождения программ.- М.:Наука, 1989.
15. Колин К.К. О структуре научных исследовании по комплексной программе " Информатика". Сб. научных трудов " Социальная информатика". - М.:КВШ при ЦК ВЛКСМ, 1990.
16. Белошапка В.О. О языках моделях и информатике. Информатика и образование, 1987, N 6.
17. Дименштейн Р.П., Пирогов С.Г., Яковлев А.Г. Общение и манипулирование посредством компьютерной системы. INFO - 89: Международный симпозиум. - Минск, 1989 т.1, - Часть I.
18. Дименштейн Р.П., Яковлев А.Г. Информатика или компьютерное дело. Информатика и образование 1989, N 3. Авторское добавление: Сборник "Компьютер" , выпуск 1, М.:Финансы и статистика, 1990.
19. Dictionary of Information Technology. MacMillan Press, London, 1982.
20. Dictionary of Computing. Second Edition. Oxford University Press, 1986.
21. Черешкин Д.С., Цаленко М.С. Информатизация и перестройка советского общества. Труды ИФИП, 1988.
22. Черешкин B.C., Цаленко М.С. Перспективы и проблемы развития информационных технологий//Снстем.исслед. методол. проблем.: Ежегодник, 1988. Вып.20.- М.; 1989г.- С.7-26.
23. Айламазян А.К., Стась Е.В. Информатика и теория развития. -М.:Паука, 1989.
24. Системы комплексной информации. Бюллетень информационных технологий N 9. Международный компьютерный клуб.
25. Дымков В.И., Синицын И.Н. Элементы Концепции персональных систем обработки информации . Системы и средства информации ИПИ АН СССР. - М.:Наука, 1989.