Смекни!
smekni.com

Методические рекомендации Томск 2009 ббк 73. 3(0)я73 Печатается по решению (стр. 11 из 14)

2.2. профессор Немецкого университета (г. Прага (1911));

2.3. профессор Берлинского университета (1914);

2.4. Нобелевский лауреат за вклад в квантовую теорию света (1921);

2.5. профессор физики в Институте фундаментальных исследований (г. Принстон, штат Нью-Джерси (1933-1955)),

  1. общественно-политическая деятельность:

3.1. инициация разработок атомной бомбы в США (письмо Президенту США (1939));

3.2. взаимодействие с правительством Израиля по вопросам восстановления еврейского государства в Палестине (1940е-50е г.г.).

Основные результаты научных исследований А. Эйнштейна.

Специальная теория относительности (СТО) и её отношение к классическому принципу относительности, введенному Г. Галилеем (никакими механическими опытами нельзя установить, покоится инерциальная система отсчета или движется равномерно и прямолинейно).

Основные положения СТО:

  1. постулаты А. Эйнштейна:

1.1. скорость света есть константа в отношении любой системы отсчета (c = 3∙108 м/с);

1.2. никакими физическими (не только механическими) опытами, произведенными в какой-либо инерциальной системе отсчета, невозможно установить, покоится эта система отсчета или движется равномерно и прямолинейно.

  1. связь длины тела l, массы m и времени T со скоростью: чем ближе скорость тела к скорости света (3∙108 м / с), тем большим временем, массой и меньшей длиной обладает тело и наоборот.

2.1. l = l0∙√1 v2 c2;

2.2. T = T0 √1 v2 c2;

2.3. m = m0 √1 v2 c2.

  1. принцип относительности, который справедлив для вычислений, предполагающих как постулаты абсолютности пространства и времени, предложенных И. Ньютоном (время везде течет одинаково, а пространство остается неподвижным безотносительно к чему-либо внешнему), так и прямо противоположные положения.

Основные положения общей теории относительности А. Эйнштейна (ОТО):

  1. равенство «тяжелой» и «инертной» массы;
  2. ответ на вопрос о механизме передачи гравитационного взаимодействия между телами: в качестве посредника гравитационных взаимодействий выступает сама «геометрия» пространства-времени: всякое массивное тело вызывает «искривление» пространства и любое иное тело, движущееся в таком пространстве, подпадает под действие первого тела.

Следствия, вытекающие из положений СТО и ОТО:

  1. формулировка теоремы сложения скоростей движения двух систем, отличающаяся от классической (полная скорость двух тел равна сумме скоростей каждого из тел): при оценке движении точки в системе S со скоростью v в отношении другой системы отсчета, двигающейся со скоростью u’ (пример движения вагона поезда в некотором направлении, а также движения какой-либо точки параллельно относительно него), скорости складываются следующим образом: u = u’ +v / 1 + v∙u / c2;
  2. выявление прямо пропорциональной связь энергии и массы тела E = m∙c2 (т.е. чем большая энергия имеется у тела, тем большей массой оно обладает и при потере энергии уменьшается масса и наоборот);
  3. создание модели нестационарной (расширяющейся) Вселенной;
  4. возникновение общетеоретической возможности выдвижения и обоснования тезиса о всеобщей относительности, затрагивающей не только природные, но и любые возможные процессы (например, социокультурные).

Контрольные вопросы

1. Что вы можете рассказать о биографии А. Эйнштейна?

2. Каковы основные результаты научных исследований А. Эйнштейна?

Дополнительная литература

1. Жданов, Л.С., Жданов, Г.Л. Физика для средних специальных учебных заведений [Текст] / Л.С. Жданов, Г.Л. Жданов. – М., 1987. – С. 444-457.

2. Кузнецов, Б.Г. Эйнштейн: жизнь, смерть, бессмертие [Текст] / Б.Г. Кузнецов. – М., 1972.

3. Куликов, С.Б. Вопросы становления предметной и проблемной области философии науки [Текст] / С.Б. Куликов. – Томск, 2005. – С. 26.

4. Френкель, В.Я., Явелев, Б.Е. Изобретения и эксперименты [Текст] / В.Я. Френкель, Б.Е. Явелев. – М., 1990.

2.14. Место и роль квантовой теории в современном естествознании

Предпосылки и условия зарождения квантовой теории.

Квантовая теория – это основной аппарат физики элементарных частиц, их взаимодействий и взаимопревращений. В состав квантовой теории входит концепция электромагнитного взаимодействия или квантовая электродинамика, а также концепция слабых взаимодействий. На современном этапе две этих концепции объединены в рамках теории электрослабого взаимодействия. В основу физики элементарных частиц также входит теория сильного (ядерного) взаимодействия, которая именуется «квантовая хромодинамика».

Квантовая теория появляется в ходе анализа состава светящихся тел (работы М. Планка, А. Эйнштейна, Н. Бора и др.).

Предпосылки зарождения квантовой теории, общая суть которых совпадает с рассогласованием экспериментальных данных с волновой теорией света (Х. Гюйгенс, Р. Гук (17 век)), а именно:

  1. предположения в рамках ранней волновой теории продольного характера световых волн, механических по природе, в которых колебания частиц среды происходит перпендикулярно к направлению их распространения;
  2. возможности механических волн только в твердых телах и на поверхности жидкостей, в связи с чем требовалось наличие некоторого вещества между Землей и Солнцем, поскольку свет свободно доходит до Земли; в качестве данного вещества традиционно допускался эфир;
  3. экспериментального опровержения наличия эфира Альбертом Микельсоном (или Майкельсоном) и Эдвардом Морли в конце 19 века (суть исследований (см. рис. 1 и рис. 2 (http://ru.wikipedia.org/wiki/Эксперимент_Майкельсона-Морли)), проведенных А. Микельсоном в 1881 г., а также А. Микельсоном совместно с Э. Морли в 1887 г. заключалась в попытке зафиксировать изменение скорость света под влиянием движения Земли в пределах эфира; был получен отрицательный результат).

Движение Земли вокруг Солнца и через эфир (Рисунок 1).

Схема экспериментальной установки (Рисунок 2)

Условия зарождения квантовой теории:

  1. разработка электромагнитной теории света Д. Максвеллом, в рамках которой становится возможным объяснение явлений, связанных с распространением света в различных средах, в том числе в вакууме; в то же время в рамках электромагнитной теории остаются не ясными как минимум два момента:

1.1. причина, по которой электромагнитные волны не сводятся только к волнам, видимым человеческим глазом;

1.2. некоторые особенности интерференции света, т.е. пространственного перераспределения энергии светового излучения при наложении двух или нескольких световых волн; это перераспределение характеризуется такими моментами:

1.2.1. образование постоянного во времени чередования областей повышенной и пониженной интенсивности света;

1.2.2. явление «световых биений» и «корреляций интенсивности»;

  1. введение М. Планком (1858-1947) в 1900 году понятия «квант света» (от «квантум» – количество, масса (лат.)) для объяснения распространения света в вакууме;
  2. формулировка математического вида связи волновых и корпускулярных свойств света: ε = ħ / ν, где ε – энергия кванта, ν – частота колебания электромагнитного излучения, ħ – постоянный коэффициент, одинаковый для всех волн и квантов;
  3. выдвижение Э. Шредингером (1887-1961) общего математического положения о том, что отрицательное значение деления квадрата постоянной Планка на удвоенную массу частицы в произведении на оператор Лапласа и в сумме с произведением потенциальной функции частицы в силовом поле на искомую волновую функцию дает произведение мнимой единицы на постоянную Планка, а также на производную от искомой функции по времени:

– ħ2/2m∙∆Ψ+U(x,y,z,t)Ψ=i∙ħ∙∂Ψ/∂t

это положение еще более упрочило представление о необходимой связи волновых и корпускулярных свойств излучения и позволило заложить основу квантовой теории как относительно самостоятельного раздела физико-математического естествознания.

Границы применения квантовой теории в современной физике.

В современной физике квантовая теория имеет следующие границы применения:

  1. описание явлений, происходящих в атомных масштабах (≈ 10-10 м); при переходе к описанию ядерных масштабов (≈ 10-15 м) ранняя версия квантовой теории расширяется за счет теории сильно взаимодействующих тел;
  2. исследование элементарных частиц, которое предполагает использование квантовой теории поля, но с дополнением идеи о едином механизме взаимодействия (на современном этапе – это развивающаяся область знаний).

Общее значение квантовой теории в современной науке может быть сведено к следующим моментам:

  1. представление о том, что многообразие элементарных составляющих материального мира оформляется в рамках понимания двойственности характеристик базовых начал материальной природы, с одной стороны, как волн (распространений колебаний в среде, т.е. последствий движения других физических тел), а с другой – в качестве отдельных частиц (т.е. самостоятельных тел);
  2. объяснение на базе квантовой механики характеристик движения элементарных частиц (в частности, фотонов), причем в условиях затрудненности одновременной фиксации и местоположения, и импульса частицы (в классическом случае импульс прямо пропорционален произведению массы на скорость);
  3. разрешение основных проблем в понимании природы движения элементарных частиц в ходе применения принципов дополнительности (Н. Бор) и неопределенности (В. Гейзенберг) (1927). (Смысл принципа дополнительности заключается в том, что для полного описания квантовомеханических явлений следует привлекать классические понятия («импульс», «местоположение» и т.д.), не затрагивая их фактической противоречивости. Согласно же принципу неопределенности поведение квантовой системы подчиняется особому распределению вероятности. На отдельных этапах изучения квантовой системы наблюдатель будет сталкиваться с тем, что поведение системы имеет стандартное отклонение Δx, а также отклонение координат и импульса Δp, однако, в общем случае все это можно упорядочить в рамках математического отношения: Δx∙Δp ≥ ħ ∕ 2, где ħ – это постоянная Планка, поделенная на 2π).

Таким образом, квантовая теория выступает одной из основ современного физико-математического естествознания, раскрывая в своих принципах базовые законы и закономерности функционирования природы. Не менее существенным следствием является трансформация мировоззренческих установок в целом вследствие необходимости учета роли наблюдателя (и его сознания) в процессе исследований, а также ориентации на представление о фундаментальном характере статистических закономерностей.