Смекни!
smekni.com

В. М. Гальперин, С. М. Игнатьев, В. И. Моргунов "Микроэкономика" (стр. 23 из 115)

Теперь вспомним, что эффект дохода, который должен быть элиминирован при компенсированном повышении цен, может быть определен не только методом Хикса (как на рис. 3.21), но и методом Слуцкого. Следовательно, очищенная от влияния эффекта дохода компенсированная кривая спроса может быть двух типов - кривая спроса по Хиксу, которую мы только что рассмотрели, и кривая спроса по Слуцкому.

Чтобы построить последнюю, вернемся к рис. 3.19. Отметим прежде всего, что две бюджетные линии KL и K'L' можно рассматривать как полученные вращением одной из них вокруг точки E1. Подобных прямых, проходящих через E1, может быть сколь угодно много. И каждая из них будет удовлетворять требованию РXX + РYY = 1. При фиксированном значении I вращение бюджетной прямой вокруг E1 можно интерпретировать как сохранение неизменной покупательной способности денег. Точки касания всех таких, проходящих через E1, бюджетных прямых со всеми возможными кривыми безразличия позволят построить кривую цена-потребление, элиминирующую эффект дохода по Слуцкому, а на ее основе и соответствующую скомпенсированную кривую спроса на товар X с постоянным (по Слуцкому) реальным доходом.

Взаимное расположение кривых безразличия трех типов (обыкновенной, скомпенсированной по Хиксу и скомпенсированной по Слуцкому) для нормальных и некачественных товаров показано на рис. 3.23.

ПРИМЕЧАНИЕ

[1] Подробнее см.: Фридмен М. Маршаллианская кривая спроса // Теория потребительского поведения и спроса. СПб., 1993. (Вехи экономической мысли; Вып. 1).

3.7 Излишек потребителя и кривые безразличия

Читатель уже знаком с понятием "излишек, получаемый потребителем".

Этот излишек определяется как площадь фигуры, ограниченной сверху обыкновенной линией спроса, слева вертикальной осью и снизу линией цены (площадь треугольника PCF на рис. 3.24).

Иногда этот излишек называется "маршаллианским потребительским излишком".[1]

Данное понятие используется для оценки в денежном выражении изменений в благосостоянии потребителей, вызванных изменениями цен, денежных доходов, налогов и т.д.

К сожалению, маршаллианский потребительский излишек обладает одним серьезным недостатком.

В ситуациях, когда одновременно изменяются доходы потребителей и цена одного из товаров или когда одновременно изменяются несколько цен, величина маршаллианского потребительского излишка теряет свою "определенность", она становится зависимой от последовательности расчетов.[2]

Поэтому для оценки изменений в благосостоянии потребителей используются и другие, содержательно близкие к маршаллианскому потребительскому излишку, понятия, которые не обладают этим недостатком.[3]

Рассмотрим верхнюю часть рис. 3.25. По горизонтальной оси откладывается количество товара X в натуральном выражении, по вертикальной оси - расходы потребителя Y на все прочие товары. Цены всех прочих товаров фиксированы. Уравнение бюджетной линии имеет вид:

Y = I - РXХ.

Предположим, бюджетная линия занимает положение K1L1. Длина отрезка OK1 равна доходу потребителя I. Наклон бюджетной линии равен - РX. Допустим, что первоначально потребитель имеет возможность приобретать неограниченное количество товара X по цене РX- Он выбирает товарный набор, соответствующий точке E1. Этот набор включает X1 единиц товара X. Сумма расходов на прочие товары равна OY1. Сумма расходов на X1 единиц товара X равна Y1K1.

Предположим теперь, что потребитель лишен возможности покупать товар X. Тем самым он оказывается в точке K1. Какую дополнительную сумму дохода ему нужно предоставить, чтобы его благосостояние не изменилось по сравнению с первоначальным положением? Поскольку точка А лежит на той же кривой безразличия, что и точка K1, необходимая дополнительная сумма дохода равна K1А. Эта величина называется компенсирующей вариацией дохода. Обозначим ее Vc.

Снова предположим, что потребитель находится в точке E1. Какой максимальной суммой дохода он готов пожертвовать ради того, чтобы его не лишали возможности покупать товар X? Проведем вспомогательную бюджетную линию K2L2, параллельную линии K1L1 и касающуюся той линии безразличия, которая проходит через точку K1. Потребитель не согласится пожертвовать суммой, превышающей K2K1, иначе кривая безразличия, проходящая через K1, оказывается для него недостижимой. Любая "жертва", меньшая, чем K2K1, позволяет потребителю увеличить свое благосостояние по сравнению с положением K1. Следовательно, максимальная сумма дохода, которой готов пожертвовать потребитель ради того, чтобы его не лишали возможности покупать товар X, равна K2K1. Эта величина называется эквивалентной вариацией дохода.[4] Обозначим ее Ve.

Следует обратить внимание на то, что в определении Vc за основу принимается начальная кривая безразличия, в определении Ve за основу принимается последующая кривая безразличия (в нашем случае кривая безразличия, проходящая через точку K1).

Определим теперь, в каком соответствии находятся компенсирующая и эквивалентная вариации с маршаллианским потребительским излишком.

Прежде всего отметим, что на рис. 3.25 точка E2 расположена левее E1. Следовательно, товар X в рассмотренной ситуации является нормальным. Предположим, что карта безразличия такова, что товар X остается нормальным всегда, независимо от дохода потребителя и цены товара X. Это значит, что при любом значении X наклон вышерасположенной кривой безразличия по абсолютной величине больше наклона нижерасположенной кривой безразличия. Например, наклон U1 в точке М по абсолютной величине больше наклона кривой U2 в точке E2, наклон U1 в точке R по абсолютной величине больше наклона кривой U2 в точке Т, и т.д. Кроме того, это значит, что с увеличением X вертикальное расстояние между кривыми безразличия уменьшается.

Например, K1А > E2М > TR.

В нашем случае эквивалентная вариация меньше компенсирующей вариации: Ve < Vc.

Действительно, Ve = K2K1 = E2N < E2M < Vc.

В нижней части рис. 3.25 линия D представляет собой обыкновенную линию спроса нашего потребителя на товар X при его денежном доходе, равном I = OK1. Напомним, что эта линия получена путем поворота бюджетной линии вокруг фиксированной точки K1 в верхней части рисунка. Например, при цене товара X, равной РX, бюджетная линия в верхней части рисунка занимает положение K1L1, потребитель предъявляет спрос на X в объеме X1. Таким образом, получаем точку F линии D в нижней части рисунка. При повышении цены товара X бюджетная линия поворачивается вокруг K1 по часовой стрелке. В результате объем спроса на товар X сокращается. При цене товара X, соответствующей наклону кривой безразличия ?72 в точке К&bsol;, объем спроса сокращается до нуля. Допустим, это значение цены товара X равно ОС на вертикальной оси в нижней части рис. 3.25. Таким образом, получаем точку С обыкновенной линии спроса D.

Линия d(U1) в нижней части рис. 3.25 представляет собой компенсированную линию спроса нашего потребителя на товар X при фиксированном уровне его благосостояния, соответствующем кривой безразличия U1. Напомним, что эту линию можно получить путем "прикладывания" к кривой U1 касательных прямых с различным наклоном. При этом абсцисса точки касания соответствует объему спроса, наклон касательной (равный соответственно наклону кривой U1 в точке касания) соответствует цене товара X.

Очевидно, что линии D и d(U1) имеют общую точку F. Слева от F линия d(U1) расположена выше линии D, поскольку при любом значении X наклон вышерасположенной кривой безразличия по абсолютной величине больше наклона нижерасположенной кривой безразличия. При цене товара X, соответствующей наклону U1 в точке А, объем спроса сокращается до нуля. Допустим, это значение цены товара X равно ОВ на вертикальной оси в нижней части рис. 3.25. Таким образом, получаем точку

В линии d(U1). Поскольку наклон кривой U1 в точке А по абсолютной величине больше наклона кривой U22 в точке K1, точка В расположена выше точки С.

Линия d(U2) в нижней части рис. 3.25 представляет собой компенсированную линию спроса нашего потребителя на товар X при фиксированном уровне его благосостояния, соответствующем кривой безразличия U2. Эту линию спроса можно получить путем "прикладывания" к кривой U2 касательных прямых с различным наклоном. Линии D и d(U2) имеют общую точку С. Линия d(U2) расположена ниже линии D. При цене товара X, равной РX и соответствующей наклону линии K2L2, объем спроса равен X2. Таким образом, получаем точку H линии d(U2).

Определим теперь, чему равна в нижней части рисунка компенсирующая вариация Vc.

Разобьем отрезок OX1 на п отрезков DХi (i = 1, 2, ..., n), необязательно одинаковых.

Пририсуем к кривой безразличия U1 п<>/i прямоугольных треугольников. Гипотенузой каждого из них служит отрезок кривой безразличия. Основание каждого треугольника равно DХi. Вертикальный катет каждого треугольника обозначим через DYi. Чтобы не загромождать рисунок, на нем изображены только 3 таких треугольника. Сумма длин всех п вертикальных катетов равна Y1A.

Длина вертикального катета (DYi) примерно равна длине горизонтального катета (DХi), умноженной на абсолютную величину тангенса наклона кривой безразличия U1 на соответствующем участке. Поскольку наклон кривой U1 в каждой ее точке соответствует ординате компенсированной линии спроса d(U1), можно записать: