Смекни!
smekni.com

В. М. Гальперин, С. М. Игнатьев, В. И. Моргунов "Микроэкономика" (стр. 68 из 115)

И здесь в отличие от модели Курно дуополист 1 понимает, что его соперник на самом-то деле (в противоположность его первоначальным предположениям) реагирует на его действия и, по-видимому, будет реагировать и впредь. Тогда он решает вдвое сократить свой выпуск, уменьшить его с q1 до q'1, который, как легко заметить, будет равен выпуску дуополиста 2, q1q2. Тогда общий выпуск двух дуополистов будет Oq1, а цена вернется к первоначальному монопольному уровню Pm. Второй дуополист, понимая, что лучше продавать один и тот же выпуск (q'1q1 = q1q2) по более высокой монопольной цене Pm, чем по цене P, согласится сохранить объем своего производства неизменным. Таким образом, убедившись в своей взаимозависимости, дуополисты добровольно и независимо друг от друга (не прибегая к сговору), выбирают монопольное решение. Поскольку в нашем примере сохраняется допущение о нулевых операционных затратах, рынок окажется поделенным поровну между двумя дуополистами (Oq'1 = q1q'1).

Исход олигополии Чемберлина аналогичен решению Курно для монополии (11.17), (11.18), в чем нетрудно убедиться. Из обсуждения графического решения дуополии Чемберлина (рис. 11.5) мы установили, что выпуски у обоих дуополистов окажутся одинаковы, обозначим их qi (i = 1, 2). Тогда обратная функция рыночного спроса (11.6) может быть записана так:

Р = а - 2bqi. (11.36)

Поскольку дуополисты во всех отношениях симметричны, функция прибыли каждого из них имеет вид:

pi = qiP - c = aqi - 2bqi2 - cqi. (11.37)

Условием максимизации (11.37) первого порядка будет:

dpi/dqi = a - 4bqi - c = 0, (11.38)

откуда:

q* = (a - c)/4b. (11.39)

Поскольку условие второго порядка:

d2pi/dqi2 = - 4b < 0 (11.40)

также выполняется, решение (11.39) обеспечивает i-му дуополисту максимум прибыли. Очевидно, что общий выпуск обоих дуополистов составит:

Q = 2qi = (a - c)/2b. (11.41)

Подставив (11.41) в (11.36), найдем значение цены:

Pm = (a + c)/2. (11.42)

Результаты (11.41) и (11.42) аналогичны (11.17) и (11.18).

Модели дуополии Курно и Чемберлина различаются предположениями продавцов о поведении друг друга. В модели Курно дуополисты при определении своих прибылемаксими-зирующих выпусков рассматривают выпуски друг друга как некие заданные параметры, константы. В модели Чемберлина каждый дуополист исходит из предположения о том, что выпуск соперника будет меняться некоторым согласующимся с его собственными, интересами образом. Такое предположение в принципе представляется более реалистичным. Ведь при однородности выпускаемой продукции оба дуополиста оказываются, если можно так сказать, "в одной лодке" и действия каждого из них объективно должны быть направлены на то, чтобы удержать "лодку" на плаву и не сбиться с курса. И как любая пара гребцов, они стремятся действовать в унисон. Однако это предположение отнюдь не бесспорно. Максимизация общей (совокупной) прибыли олигополии (дуополии), как мы увидим в разделе 11.3, весьма проблематична даже при наличии сговора. Тем более она маловероятна в его отсутствии, когда предприятия действуют на свой страх и риск. Ведь для максимизации общей прибыли продавцы должны иметь представление о кривой рыночного спроса и кривых затрат (которые в действительности не являются нулевыми) друг друга. Иметь одинаковые представления о них при отсутствии сговора вряд ли возможно. Кроме того, как и модель Курно, модель Чемберлина закрыта в том смысле, что она не учитывает возможности входа в отрасль других продавцов. А ведь монопольная цена в дуополии Чемберлина является отличной приманкой для вторжения на ее рынок предприятий-новичков (англ. entrants), а тогда равновесие в модели Чемберлина окажется нестабильным. Если вход в отрасль свободен, необходимы дополнительные предпосылки относительно поведения (и взаимоотношений) изначально укоренившихся в отрасли дуополистов и новичков.

11.2.1.3. МОДЕЛЬ ШТАКЕЛЬБЕРГА

Модель асимметричной дуополии, предложенная Г. фон Шта-кельбергом в 1934 г.,[8] представляет развитие моделей количественной дуополии Курно и Чемберлина.

Асимметрия дуополии Штакельберга заключается в том, что дуополисты могут придерживаться разных типов поведения - стремиться быть лидером (англ. leader) или оставаться последователем (англ, follower). Последователь Штакельберга придерживается предположений Курно, он следует своей кривой реагирования и принимает решения о прибылемаксимизирующем выпуске, полагая выпуск соперника заданным. Лидер Штакельберга, напротив, не столь наивен, как обыкновенный дуополист Курно, Он настолько изощрен в понимании рыночной ситуации, что не только знает кривую реагирования соперника, но и инкорпорирует ее в свою функцию прибыли, так что последняя принимает вид:

pi = f(qi, Rj(qi). (11.43)

А затем он максимизирует свою прибыль, действуя подобно монополисту.

Ясно, что в случае дуополии возможны четыре комбинации двух типов поведения.

1. Дуополист 1 - лидер, дуополист 2 - последователь.

2. Дуополист 2 - лидер, дуополист 1 -∙ последователь.

3. Оба дуополиста ведут себя как последователи.

4. Оба дуополиста ведут себя как лидеры.

В случаях 1 и 2 поведение дуополистов совместимо, один ведет себя как лидер, другой - как последователь. Здесь не возникает конфликта и исход их взаимодействия стабилен.

Случай 3 по сути представляет ситуацию дуополии Курно, оба дуополиста руководствуются своими кривыми реагирования, и исход их взаимодействия стабилен.

Нередко поэтому говорят, что модель Курно - это частный случай модели Штакельберга.

А вот в последнем случае, когда оба дуополиста стремятся стать лидерами, каждый из них предполагает, что соперник будет вести себя в соответствии со своей кривой реагирования, т. е. как монополист Курно, тогда как на деле ни один из них не придерживается такого типа поведения. Исходом подобного взаимодействия становится неравновесие Штакельберга, ведущее к развязыванию ценовой войны. Она будет продолжаться до тех пор, пока один из дуополистов не откажется от своих притязаний на лидерство либо дуополисты вступят в сговор. Сам Штакельберг считал именно случай 4 наиболее обычным исходом дуополии. Рассмотрим возможные исходы подробнее.

Последователь Штакельберга, как уже было сказано, придерживается своей функции реагирования вида (11.11), (11.11*) или (11.12), (11.12*), а затем при определенном количественном решении соперника, представляющегося последователю лидером, приспосабливает свой выпуск к прибылемаксимизирующему уровню. Лидер понимает, что его соперник ведет себя как последователь, и при данной его функции реагирования определяет свой прибылемаксимизирующий выпуск.

Поэтому в случае 4 каждый дуополист определяет максимум своей прибыли исходя из предположения, что он является лидером, а соперник - последователем. Если в результате прибыль лидера окажется выше прибыли последователя, дуополист выберет положение лидера, независимо от того, что решит соперник. В противном случае он выберет положение последователя. Исходя из аналитической версии модели Курно (раздел 11.2.1.1.2), представим функцию прибыли лидера (11.43) для дуополиста 1, подставив в уравнение его прибыли (11.9) функцию реагирования дуополиста 2 (11.12*). Тогда (11.9) примет вид:

p1 = aq1 - bq12 - bq1[(a - c)/2b - qi/2] - cq1, (11.44)

что после преобразований и перестановок дает:

p1 = ((a - c)/2)q1 - (b/2)q12. (11.45)

Приравнивая производную (11.45) по q1 нулю, имеем:

dp1/dq1 = (a - c)/2 - bq1 = 0,

откуда:

ql1 = (a - c)/2b. (11.46)

Это и есть оптимальный выпуск лидера Штакельберга. Он обеспечивает максимум его прибыли, поскольку условие второго порядка также выполняется b > 0 по предположению). В силу симметричности ситуации, возникающей в случае 4, прибылемаксимизирующий выпуск дуополиста 2, тоже претендующего на роль лидера, также составит:

ql2 = (a - c)/2b. (11.46*)

(Верхний индекс I в (11.46) и (11.46*) означает прибылемаксимизирующий выпуск лидера).

Определим теперь прибылемаксимизирующий выпуск последователя Штакельберга, подставив (11.46*) в (11.12) и соответственно (11.46) в (11.12*):

qf1 = [(a - c)/2b] √ [1/2 (a - c)/2b] = (a - c)/4b/i<>, (11.47)

qf2 = [(a - c)/2b] √ [1/2 (a - c)/2b] = (a - c)/4b/i<>. (11.47*)

(Верхний индекс /"в (11.47) и (11.47*) означает прибылемаксимизирующий выпуск последователя).

Таким образом, прибылемаксимизирующий выпуск последователя, qfi, вдвое ниже прибылемаксимизирующего выпуска лидера, qli (i = 1, 2). Сравнив (11.46), (11.46*), (11.47) и (11.47*) с (11.17), заметим, что прибылемаксимизирующий выпуск лидера Штакельберга тот же, что и у дуополиста Курно, а последователя вдвое меньше, чем у последнего.

В случаях 1 и 2, когда один дуополист, неважно какой именно, ведет себя как лидер, а другой как последователь, их общий выпуск будет равен сумме либо (11.46) и (11.47*), либо (11.46*) и (11.47), т. е.:

Q = (a - c)/2b + (a - c)/4b = 3(a - c)/4b. (11.48)

Подставив (11.48) в функцию рыночного спроса (11.6), найдем равновесную цену олигополии Штакельберга в ситуациях 1, 2. Она будет равна:

P = a - b ∙ 3(a - c)/4b = (a + 3c)/4. (11.49)

(11.48) и (11.49) - параметры равновесия Штакельберга.

Для того чтобы от равновесия перейти к неравновесию Штакельберга (от случаев 1 и 2 к случаю 4), определим сначала прибыли лидера и последователя. Это, между прочим, поможет нам понять стремление олигополистов Штакельберга именно к неравновесию. Подставим сначала значение ql1 из (11-46) в (11.45). Прибыль лидера, если им окажется дуополист 1, составит:

pl1 = [(a - c)/2][(a - c)/2b] √ (b/2) [(a - c)2/4b2] = [(a - c)2/4b] √ [(a - c)2/8b] = (a - c)2/8b. (11.50)

Симметрично прибыль дуополиста 2, если тот окажется лидером, будет:

pl1 = (a - c)2/8b. (11.50*)

Определим теперь прибыль последователя, подставив значения qf и ql в (11.9) и (11.9*).