Смекни!
smekni.com

1. 1 "Фон-Неймановские" и "не-Фон-Неймановские" архитектуры (стр. 4 из 10)


Рис. 1.3.1 ВС с общей (а) и распределённой (б) памятью

Системы с распределенной памятью образуют вычислительные комплексы (ВК) — коллективы ЭВМ с межмашинным обменом для совместного решения задач (рис.1.5б). В ВК объединяются вычислительные средства систем управления, решающие специальные наборы задач, взаимосвязанных по данным. Принято говорить, что такие ВК выполняют распределенные вычисления, а сами ВК называют распределенными ВК.

Другое, противоположное воплощение принципа МИМД — масспроцессорные или высокопараллельные архитектуры, объединяющие сотни — тысячи — десятки тысяч процессоров.

В современных супер-ЭВМ наметилась тенденция объединения двух принципов: общей (распределяемой) и распределенной (локальной) оперативной памяти (ЛОП). Такая структура используется в проекте МВК "Эльбрус-3" и "Эльбрус-3М" (рис. 1.3.2).


Рис. 1.3.2 Схема ВС с модулями локальной памяти

1.4 Способы межмодульного соединения (комплексирования)

Различают два противоположных способа комплексирования: с общей шиной (шинная архитектура) и с перекрестной (матричной) коммутацией модулей ВС (процессоров, модулей памяти, периферии).

На рис.1.4.1 представлена система с общей шиной. Шина состоит из линий, по которым передаются информационные и управляющие сигналы.


Рис. 1.4.1 Схема ВС с общей шиной

Шина используется в режиме разделения времени, при котором лишь один модуль в данный момент работает на передачу. Принимать принципиально могут все модули, хотя преимущественно информация при выдаче в нее адресуется. Применяется в микро- и мини-ЭВМ при сравнительно небольшом числе модулей. Практически производится разделение шины на управляющую, адресную и шину данных.

В высокопроизводительных ВС для возможности одновременного обмена многими парами абонентов используется перекрестная или матричная коммутация.

Матричный коммутатор можно представить (прямоугольной) сеткой шин. К одному концу каждой подсоединен источник-потребитель информации (рис.1.4.2). Точки пересечения — узлы этой сетки — представляют собой управляющие ключи, которые соединяют или разъединяют соответствующие шины, устанавливая или прекращая связь между модулями. Реализуется связь "каждый с каждым". Одновременно могут связываться многие (до n/2) пары модулей.


Рис. 1.4.2 Матричные коммутаторы: а) — перекрёстная коммутация процессоров, б) — коммутация процессоров и модулей памяти

На рис.1.4.2а — перекрестная связь между процессорами в ВС с распределенной памятью, на рис.1.4.2б — между n процессорами и m модулями ОП.

2. Микропроцессорные системы и способы распараллеливания

2.1 Мультимикропроцессорные вычислительные системы

В настоящее время выбор сделан в пользу многопроцессорных симметричных ВС типа MIMD, обеспечивающих виртуализацию вычислительных ресурсов. Основу такой ВС составляет суперскалер, сосредоточивший в себе все способы достижения максимального быстродействия при выполнении одиночной программы. Векторные и векторно-конвейерные процессоры и системы получили своё место. Их эффективность как самостоятельных установок могла быть достаточно высокой только при решении специальных задач и тестов. Поэтому достаточно быстро выяснилось, что эти установки могут выполнять функции интеллектуальных терминалов при решении основной задачи на другом универсальном вычислительном средстве и выполнять лишь отдельные его заявки. Сегодня стало окончательно ясно, что первые эффективны лишь в роли специализированных вычислительных устройств для решения специальных задач. Вторые твердо заняли место в составе многофункциональных арифметическо-логических устройств (АЛУ) суперскалеров, ибо без конвейеров мы не мыслим себе выполнение всех операций ВС.

Складывается и структура памяти ВС, которая может совмещать в одной установке все способы доступа: от разделяемой (общей) до распределенной оперативной памяти. Однако ограниченные возможности эффективной работы с общей памятью часто диктуют иерархическую структуру ВС, где уровни иерархии (кластеры) отличаются или способом доступа к оперативной памяти, или тем, что каждый кластер имеет свою собственную физическую память в общем адресном пространстве. При этом принцип буферизации, основанный на многоуровневой по быстродействию (и, конечно, — различной по технологии) памяти, на активном использовании Кэш-памяти, продолжает развиваться. Кэш-память, как память самого высокого уровня, претерпевает функциональное разбиение в зависимости от типа данных, для хранения которых она предназначена, либо, в зависимости от вида обработки, — программ или данных.

Все сказанное выше подтверждает перспективность структурных решений при проектировании многопроцессорного комплекса "Эльбрус-3" и его микропроцессорного развития "Эльбрус-3М", "Эльбрус-2К". Таким образом, структура "длинного командного слова" (архитектура VLIW, лежащая в основе EPIC) попадает в разряд классических.

Сейчас микропроцессор, сконцентрировавший все достижения микроэлектроники, является основной составляющей элементно-конструкторской базы ВС. Поэтому понятие "мультимикропроцессорные ВС" пришло на смену понятию "микропроцессорные ВС".

Анализ современных мультимикропроцессорных ВС позволяет выделить те развиваемые характерные решения, которые в условиях микроминиатюризации и снижения энергоемкости, "экономного" логического развития обеспечивают необходимые свойства универсального применения.

Такими решениями являются следующие.

1. Многопроцессорные кристаллы. Воспроизведение многопроцессорной ВС на одном кристалле в значительной степени характерно для сигнальных вычислительных средств, специализирующихся на обработке двух- и трехмерных изображений, которые применяются в цифровом телевидении и радиовещании, при передаче изображений по каналам связи и др. Такие средства эффективно используются в качестве нейрокомпьютеров.

Например, на одном кристалле MVP (Multimedia Video Processor) семейства TMS 320 C80 (фирма Texas Instrument) расположены 4 32-разрядных цифровых сигнальных процессора (DSP — Digital Signal Processor) с фиксированной запятой (ADSP-0 — ADSP-3). Их особенность — высокая степень конвейеризации и до 64 бит длина командного слова для параллельного выполнения нескольких операций. Система команд содержит команды над битовыми полями и структурами данных, несущими графическую информацию. Такая специализация обусловила понятие — DSP-архитектура.

Процессоры работают независимо. Т.е. ВС — типа MIMD — (Multiple-Instruction, Multiple-Data). Программируются отдельно на ассемблере или ЯВУ. Данными обмениваются через общую внутрикристальную память.

Каждый из ADSP содержит КЭШ-память команд (2 Кбайта), и через матричный коммутатор Crossbar получает доступ к 32 из имеющихся 50 Кбайт быстродействующей статической внутренней памяти. Память расслоенная — поделена на сегменты. Если два и более процессора в одном цикле попытаются обратиться к одному сегменту, аппаратная система управления доступом с циклическим изменением приоритета (round robin prioritization) позволит сделать это только одному процессору.

32-разрядное АЛУ ADSP может работать как два 16- или четыре 8-разрядных АЛУ. Этого достаточно для обработки видеоизображений. Специальные блоки ускоряют обработку графики. Блоки генерации адресов формируют кольцевые (бесконечные) буферы. Аппаратно поддержаны три вложенных цикла.

RISC-процессор управляет четырьмя ADSP с помощью диспетчера. Диспетчер и планировщик заданий тесно взаимодействуют с контроллером пересылок. Кроме того, управляющий процессор самостоятельно выполняет вычисления и обеспечивает обмен с внешними устройствами. Содержит встроенный блок плавающей арифметики и набор векторных операций с плавающей запятой, оптимизированных для обработки изображений, звука и трехмерной графики.

2. Транспьютерная технология. Представленная выше архитектура обладает такой конструктивной законченностью, которая позволяет как встраивать ее в некоторую систему, так и организовать взаимодействие нескольких кристаллов. Это обеспечивается развитыми средствами связи и обмена данными.

Возможность комплексирования привлекла внимание еще на раннем этапе развития микропроцессоров (в середине 1980-х годов) и привела к построению транспьютеров — микропроцессоров, снабженных развитыми средствами комплексирования. Таким образом, создавались "кирпичики", на основе которых можно было создавать сложные структуры. Эта тенденция не только сохранилась, но является необходимым средством построения мультимикропроцессорных ВС.

Преследуя многофункциональность средств обмена, не обязательно требовать их размещения на одном кристалле с центральным процессором.

Общее адресное пространство комплексируемых микропроцессоров "АКУЛА" обеспечивает псевдообщую память и исключает необходимость программной организации обмена данными. Если адрес физически принадлежит ОП другого процессора, то обмен организуется автоматически, без вмешательства пользователя (т.е. программно не предусматривается).