РЕФЕРАТ ПО МАТЕМАТИКЕ.
НА ТЕМУ:
«ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ».
АВТОР РАБОТЫ:
УЧЕНИК 9 КЛАССА «Б»
ГОУ ГИМНАЗИИ № 1505
СТАРИЧЕНКОВ АЛЕКСАНДР.
НАУЧНЫЙ РУКОВОДИТЕЛЬ:
БАТАЛОВА ВЕРА ИВАНОВНА.
ГОД РЕАЛИЗАЦИИ ИССЛЕДОВАНИЯ:
2010-2011 ГОД
ГОРОД МОСКВА.
СОДЕРЖАНИЕ:
1) ВВЕДЕНИЕ……………………………………………………стр. 2
2) ОСНОВНАЯ ЧАСТЬ РЕФЕРАТА………………………….стр. 3-9
ГЛАВА I: МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ…………….................................................стр.3-7
а) ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ………………………………стр.3
б) ГРАФИЧЕСИЙ МЕТОД………………………………………стр.3-4
в) СПОСОБ ЗАМЕНЫ ПЕРЕМЕННОЙ И АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ И ВЫЧИТАНИЯ………………………………….стр.4-6
г) СПОСОБ ПОЧЛЕННОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ…стр.6
д) СПОСОБ ПОДСТАНОВКИ……………………………………стр.6-7
ГЛАВА II: МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ………………………………………………………стр.7-8
а) ОДНОРОДНЫЕ СИСТЕМЫ УРАВНЕНИЙ………………..стр.7-8
б) СИММЕТРИЧНЫЕ СИСТЕМЫ УРАВНЕНИЙ……………стр.8
3) ЗАКЛЮЧЕНИЕ…………………………………………………стр.9
4) СПИСОК ЛИТЕРАТУРЫ……………………………………..стр.10
5) ПРИЛОЖЕНИЕ…………………………………………………стр.11-17
I. ИСТОРИЧЕСКАЯ СПРАВКА………………………………...стр.11-12
II. РЕШЕБНИК……………………………………...……………..стр.12-16
а) СПОСОБ ЗАМЕНЫ ПЕРЕМЕННОЙ И АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ И ВЫЧИТАНИЯ………………………………….стр. 12-14
б) СПОСОБ ПОЧЛЕННОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ..стр. 14
в) ГРАФИЧЕСИЙ МЕТОД………………………………………стр. 14-16
г) СИММЕТРИЧНЫЕ СИСТЕМЫ УРАВНЕНИЙ …………..стр. 16
д) ОДНОРОДНЫЕ СИСТЕМЫ УРАВНЕНИЙ ….……………стр. 16
ВВЕДЕНИЕ.
Тема моего реферата «Основные методы решения систем уравнений с двумя переменными». Эта темя изучается в школьном курсе алгебры: в 7 классе изучаются системы линейных уравнений, а в 9 классе – системы нелинейных уравнений. Решение многих задач по алгебре, физике, геометрии приводит к составлению системы уравнений. Умение решать эти системы означает успешное изучение курсов алгебры, физики, геометрии. Решение систем уравнений включено в государственный экзамен 9 и 11 класса.
Цель моего реферата: разобрать основные методы решения систем уравнений. Для реализации моей цели я ставлю перед собой следующие задачи:
1) Ознакомление с литературой по теме реферата;
2) Обобщить основные методы решения систем линейных уравнений;
3) Познакомиться с некоторыми методами решения систем нелинейных уравнений;
4) Рассмотреть вопросы равносильности систем уравнений.
В результате изучения этой темы я составлю решебник систем уравнений. Я надеюсь что, мой решебник сможет помочь учащимся 8-9 классов лучше подготовиться к выпускным экзаменам. А основные методы решения систем с параметром я буду изучать в 10-м классе.
ГЛАВА I: МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ.
Для начала выясню, что такое линейные и нелинейные уравнения с двумя переменной:
1) Линейные уравнения с двумя переменной – уравнение первой степени.
2) Нелинейные уравнения с двумя переменной – уравнение второй степени.
Теперь выясним, что такое решение системы уравнения с двумя переменными:
Пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство, называют решением системы[1].
Осталось только два вопроса: во-первых, что является графиком уравнения и, во-вторых, вопрос о равносильности систем уравнений:
1) Графиком уравнения с двумя переменными является изображение точек её решений на плоскости[2].
2) Две системы называются равносильными, если множества их решений совпадают. Если обе системы не имеют решений, то они также считаются равносильными[3].
Теперь, когда все основные понятия и определения разобраны, можно приступать к решению систем разных видов основными методами, которые мне известны на данный момент.
Основная цель при решении систем уравнений - решить эту систему, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются:
1) графический способ;
2) способ замены переменной и алгебраического сложения и вычитания;
3) способ почленного умножения и деления;
4) способ подстановки.
Все эти способы используются во всех предметах, где необходимы знания математики: алгебра, физика, химия, геометрия.
Рассмотрим способ № 1: Известно, что графиком линейного уравнения является прямая. Вопрос о числе решений системы двух линейных уравнений сводиться к определению числа общих точек прямых, являющимися графиками уравнений системы. Рассмотрим три случая расположения прямой.
Случай 1: Прямые, которые являются графиком функции, входящих в данную систему, пересекаются.
Решим эту систему:
Уравнениями у=-1,1х+12 и у=-6х+18 задаются линейные функции. Угловые коэффициенты прямых этих функций различны. Следовательно, эти прямые пересекаются, и система имеет единственное решение. Прировняв правые части уравнений, найдем точку пересечения. Данная система имеет единственное решение: пара чисел равная (1,2; 10,7).
Случай 2: Прямые, являющиеся графиками уравнений системы, параллельны.
Решим систему уравнений:
Прямые, являющиеся графиками линейных функций у=-0,4х+0,15 и у=-0,4х+3,2, параллельны, так как их угловые коэффициенты одинаковы, а точки пересечения с осью у различны. Отсюда следует, что данная система уравнений не имеет решений.
Случай 3: Прямые, являющиеся графиками уравнений системы, совпадают.
Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х - произвольное число, а у = - 2,5х - 9, является решением системы. Система имеет бесконечно много решений.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:
1) не умение, выражать одну переменную через другую;
2) не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).
Рассмотрим способ № 2(замена переменной): Легче всего это сделать, решив задачу, что мы сейчас и сделаем:
Условие задачи: Ученик задумал два числа. Первое число на 5 больше второго. Если от удвоенного первого числа вычесть утроенное второе число, то получится 25. Какие числа задумал ученик?
Решение: Пусть х - первое число, у - второе число. По условию задачи составим систему уравнений.
В первом уравнении выразим х через у: х=у+5.
Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему
Очевидно, что получившееся второе уравнение является уравнением с одной переменной.
Решим его:
2y + 14 – 3y = 25
-1y = -11
y = 11
Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:
x = -11 + 5
x = -6
Ответ: ученик задумал числа равные -6 и -11, т. е. пара чисел (-6; -11) является решением данной системы.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:
1) не умение, выражать одну переменную через другую;
2) не умение, подставить уже полученную переменную (забывают или не видят).
Рассмотрим способ № 2(алгебраическое сложение): Как и в методе подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Решим систему уравнений:
В уравнениях этой системы коэффициенты при у являются противоположными числами (+3y и -3y). Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:
2x = 18
x = 9
Заменим одно из данных нам уравнений системы, например первое, уравнением 2x = 18. Получим систему:
Полученная система равносильна данной системе. Решим полученную систему:
Из уравнения 2х=18 находим, что х=9. Подставив это значение х в уравнение 4х-3у=12, получим уравнение с переменной у.
Решим это уравнение:
4 × 9 + 3y = 12
3y = -24
y = -8
Пара чисел (11; - 9) - решение полученной системы, а значит, и данной нам системы.
Воспользовавшись тем, что в уравнениях данной нам системы коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы, в которой одно из уравнений содержит только одну переменную.
Геометрически равносильность систем означает, что графики уравнений 4x + 3y = 12 и -2x - - 3у=38 пересекаются.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по одной причине: