Случай 3: Прямые, являющиеся графиками уравнений системы, совпадают.
Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х - произвольное число, а у = - 2,5х - 9, является решением системы. Система имеет бесконечно много решений.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:
1) не умение, выражать одну переменную через другую;
2) не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).
Рассмотрим способ № 2( замена переменной): Легче всего это сделать решив задачу, что мы сейчас и сделаем:
Условие задачи: Ученик задумал два числа. Первое число на 5 больше второго. Если от удвоенного первого числа вычесть утроенное второе число, то получится 25. Какие числа задумал ученик?
Решение: Пусть х - первое число, у - второе число. По условию задачи составим систему уравнений.
В первом уравнении выразим х через у: х=у+5.
Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему
Очевидно, что получившееся второе уравнение является уравнением с одной переменной.
Решим его:
Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:
Ответ: ученик задумал числа равные -6 и -11, т. е. пара чисел (-6; -11) является решением данной системы.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:
1) не умение, выражать одну переменную через другую;
2) не умение, подставить уже полученную переменную (забывают или не видят).
Рассмотрим способ № 2( алгебраическое сложение): Как и в методе подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Решим систему уравнений:
В уравнениях этой системы коэффициенты при у являются противоположными числами ( +3y и -3y). Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:
Заменим одно из данных нам уравнений системы, например первое, уравнением 2x = 18. Получим систему:
Полученная система равносильна данной системе. Решим полученную систему:
Из уравнения 2х=18 находим, что х=9. Подставив это значение х в уравнение 4х-3у=12, получим уравнение с переменной у.
Решим это уравнение:
Пара чисел (11; - 9) - решение полученной системы, а значит, и данной нам системы.
Воспользовавшись тем, что в уравнениях данной нам системы коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы, в которой одно из уравнений содержит только одну переменную.
Геометрически равносильность систем означает, что графики уравнений 4x + 3y = 12 и -2x - - 3у=38 пересекаются.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по одной причине:
1) не умение, подставить уже полученную переменную (забывают или не видят).
Рассмотрим способ № 3: Если при решении систем уравнений учащийся не может ни заменить переменную, ни алгебраически сложить, то можно прибегнуть к этому способу. Разберём на примере.
Решим систему уравнений:
Домножим верхнее уравнение на 3. Получим:
Очевидно, что и в первом и во втором уравнениях есть 3y, только с разными занками. Дальше решаем так же, как и прошлой системе ( см. 3 разбор).
В конце получаем, что пара чисел (4,2; -4,8) является решением данной нам системы.
Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по ряду причине:
1) не видят, что и на сколько надо домножить;
2) не умение, подставить уже полученную переменную (забывают или не видят).
Рассмотрим способ подстановки: Этот метод или способ решения систем уравнений используется чаще всех. Грубо говоря, этот способ мы разобрали во всех остальных, т.к. заменяя одну систему на равносильную ей, мы находим одну переменную, а затем подставляем её значение в одно из уравнений данной нам системы. А следовательно, возникающие проблемы при решении систем уравнений этим способом такие же, как и у всех остальных методов:
1) не умения, выражать одну переменную через другую;
2) не умение, подставить уже полученную переменную;
Итак, из всего выше сказанного можно сделать вывод:
во время решения систем нелинейных уравнений у учащихся возникают проблемы по ряду двум причинам:
1) не умения, выражать одну переменную через другую;
2) не умение, подставить уже полученную переменную;
3) не видят, что и на сколько надо домножить.
5) РЕШЕБНИК.
В этой части реферата написан решебник на мою тему с целью помочь читающим попрактиковаться в решении систем уравнений с двумя переменными. Для каждого метода будет представлено по примера и решение одного из них, в качестве примера как их решать тем или иным методом.
1) Метод замены переменной и алгебраического сложения и вычитания:
Для начала метод алгебраического сложения.
Пример №1:
Решение:
Можно заметить, что в двум уравнениях присутствует одна и та же переменная: 3y, только с разными знаками. Следовательно, их можно алгебраически сложить и мы получим равносильную систему:
Итак, мы нашли значение первой переменной: x = 1. теперь подставляем это значение в любую из уравнений, чтобы найти значение второй переменной:
Получили: y = 0.
Ответ: (1; 0).
Метод алгебраического вычитания почти такой же как и метод алгебраического сложения, только вместо того, чтоб складывать уравнения, мы вычитаем одно из другого.
Теперь разберём последовательность решения методом замены переменной:
Пример №2:
Решение:
Объяснение:
Вначале я перенёс одну переменную из уравнения 1 вправо и получил: x = 1 –y. Затем, я подтсавил полученное значение во второе уравнение и нашёл значение переменной y: y = 0. после этого. Я подставил это значение во второе уравнение и получил значение переменной x: x = 1.
Ответ: (1, 0).
Теперь потренируйтесь самостоятельно.
Пример №3 (метод алгебраического сложения):
У вас должен получиться ответ: (2; -0,(3) ).
Пример №4 (метод замены переменной):
Правильный ответ: (7; 1).
2) Метод почленного умножения и деления:
Пример№1:
Решение:
Домножим первое уравнение на два и получим:
Теперь вычтем из первого уравнения второе (включаем в решение метод алгебраического вычитания). Затем решаем всё как и в прошлых примерах: находим значение одной переменной, затем второй и пишем ответ.
Ответ: (1; 1).
Метод почленного деления очень похож, но вместо умножения каждого члена уравнения на какое-либо число мы на него их делим.
Теперь потренируйтесь.
Пример №2 (метод почленного деления):
Правильный ответ: (1; 1).
Пример №3 (метод почленного умножения):
У вас должен получиться ответ: (3 -4) и (-3; 4).
3) Метод графического решения.
Пример №1:
Решение:
Для начала перенесём переменную x в правую сторону, чтобы получить уравнение функции:
Теперь начертим графики полученных функций:
Функция №1: