Смекни!
smekni.com

И. Р. Шафаревич (стр. 13 из 40)

В литературе «гипотезой Арнольда» часто называют такую ослабленную версию, где число неподвижных точек или лагранжевых пересечений оценивается снизу суммой чисел Бетти нужного многообразия, в то время как я всегда задавал вопрос об оценке снизу бόльшим числом Морса (минимальным числом критических точек гладкой функции на многообразии).

Первые случаи, где доказана гипотеза Арнольда в простейшей ситуации (для тора, где эта гипотеза является прямым обобщением «последней геометрической теоремы» Пуанкаре, в главе о которой в лекциях 1965 года стояла гипотеза) были найдены в 1983 году Конли и Цендером. Наилучшие из известных более общих её случаев доказаны

А. Флоером (покончившим, однако, самоубийством, когда ему не удалось справиться с самым общим случаем): это привело его к знаменитым «гомологиям Флоера», а затем – к связям всей этой тематики с квантовой теорией поля, с «инваринтами Зайберга-Виттена и Громова» и т.д.

Э. Виттен объяснил мне как-то, что он относит мою гипотезу, скорее, к физике, чем к математике: «Она утверждает, что с бесконечномерной топологией можно смело обращаться так, как если бы её трудностей не было и все расходящиеся ряды сходились. Конечно, такая математика (нужная и для обоснования всей квантовой теории поля) пока отсутствует, причем, отсутствует не только доказательство, но и точные теоремы. Но нам с тобой лучше не обращать внимания на эти временные трудности: пройдет лет двести, и они будут преодолены».

Необычным во Франции было то, что, согласно до сих пор не отмененному приказу правительства 1793 года, жителям Парижа запрещается называть друг друга дворянским местоимением «Вы»: все обязаны друг другу «тыкать», а кто нарушит – подлежит гильотинированию.

Ж.-П. Серр, хоть и старше меня лет на 15, строго требует от меня выполнения этого правила (уже с 1965 года), так что мы были с ним на «ты» даже во время публичной дуэли в Институте А. Пуанкаре (13 марта 2001 года).

В 1965 году он научил меня, как отличать хорошую математическую работу от плохой. Надо пойти в библиотеку Института Анри Пуанкаре, где образцовый библиотекарь Бельгодер (обгонявший когда-то Кошуля, как лучший студент курса) пустит нас к книжным полкам. Там нужно найти номер журнала со статьей, о которой идёт речь: если её еще не украли, работа была слабой. У нас у обоих были статьи в недавнем томе журнала «Ann. Inst. Fourier» (Grenoble). Том оказался уже украденным. Сейчас, с появлением ксероксов, этот чудесный метод Серра уже не действует: вместо того, чтобы уносить том или вырезать бритвой нужные страницы, проще сделать копию.

Но другие черты французских математиков более устойчивы. Абель, например, писал друзьям в Христианию, что в Париже 1820 года ни с одним математиком поговорить нельзя, «так как они все хотят учить, но ничему они не желают учиться». (Лесков отмечал в «Несмертельном Головане», что «одни только французы умеют учить тому, чего сами вовсе не понимают»).

Согласно Абелю, каждый французский математик – специалист в одной узкой области, не интересующийся ничем другим: «Один знает много о теории тепла [это Фурье] – но не спрашивай его ничего о теории чисел», «Другой – специалист по теории упругости [это Пуассон], но не спрашивай его о многогранниках», «Третий – знает всю небесную механику [это Лаплас], но не понимает алгебраических кривых».

А.Н. Колмогоров говорил мне: «Ни с одним французским математиком нельзя говорить ни о чём вне его математической специальности – таков даже мой друг Лере, который доверил мне пятку внука при его купании в ванночке (что не совсем обычно для приёма академика одной страны академиком другой и служит явным доказательством нашей давней дружбы). Только один математик во всей Франции может рассматриваться как естествоиспытатель и интересуется более широко разными областями – с ним интересно, но он далеко от Парижа, в Бюр-сюр-Иветт, это Рене Том».

И я, действительно, больше всего подружился в 1965 году именно с Томом. Беда только в том, что я никак не мог понять его теоремы из статьи «О топологических методах в биологии», где он заложил основы теории катастроф.

Том ясно отвечал мне (пару десятков лет) на вопросы об этой теореме: «Всегда найдутся дураки, чтобы находить для наших теорем доказательства». В конце концов, я попросил своего аспиранта Б.А. Хесина разобраться с этой ситуацией, и тот обнаружил, что объявленная Томом много десятков лет назад теорема не верна. А именно, Том утверждал, что число «элементарных катастроф» (бифуркаций общего положения в пространстве параметров для фазовых портретов градиентных динамических систем, рассматриваемых с точностью до топологической эквивалентности) равно семи (при четырех параметрах нашего пространства-времени). Оказалось же, что это «число катастроф Тома» не может быть меньше 13 (и, вдобавок, до сих пор никто не знает даже, конечно ли их число, или же существует бесконечно много различных катастроф).

И всё же Колмогоров прав в главном – с Томом было интересно, и я многому у него научился (хотя и сохранил не признаваемое Томом уважение к логической строгости и к необходимости доказательств).

Замечу, кстати, что и сам Колмогоров говорил мне не раз: «Не ищите в моих работах о теории турбулентности доказательств – их там нет, и я не знаю, появятся ли они когда-либо. Я нигде не утверждаю, что мои результаты вытекают из исходных уравнений Навье-Стокса. Они не доказаны, а верны, и это – гораздо важнее !»

Хотя я и пытаюсь многое доказывать, верных открытий у меня тоже во много раз больше, чем доказанных теорем. И.М. Виноградов называл Колмогорова «математиком без теорем» – ссылаясь даже на мою работу 1963 года, доказывающую теорему Колмогорова, анонсированную им в 1954 году.

Д – 18. В том, что состоялась эта Ваша зарубежная стажировка («тогда» и сразу

«в капстрану» !), большую роль, как я понимаю, сыграл Иван Георгиевич Петровский. Не расскажите ли Вы что-нибудь про Ваше общение с ним ?

А. Иван Георгиевич сыграл удивительно большую роль в моём математическом развитии (не говоря уже о его огромной роли ректора в создании неповторимой атмосферы мехмата вообще).

Около 1970 года он вручил мне докторскую диссертацию своего ученика, Дмитрия

Андреевича Гудкова, посвящённую 16-й проблеме Гильберта - о топологии алгебраических кривых степени n на вещественной проективной плоскости. Он сказал: Гудков продолжает мои работы 30-х годов по вещественным алгебраическим кривым, решая, в частности, задачу Гильберта о кривых степени 6, состоящих из 11 овалов (а больше их быть не может).

В своей формулировке проблемы 1900 года Гильберт пишет, что возможных топологически различных расположений 11 овалов только два: лишь один овал содержит в ограниченном им диске другие, и их число может быть лишь 1 или 9. Но Гильберт так и не опубликовал доказательства своей теоремы. Гудков, используя (в Нижнем Новгороде) работы своего второго учителя, физика А.А. Андронова, доказал теорему Гильберта, и я опубликовал его заметку с этим доказательством в ДАН СССР с год назад.

Но теперь вот Гудков привез диссертацию, в которой опровергнута и теорема Гильберта, и его собственное её доказательство: бывает, он утверждает, еще третье расположение одиннадцати овалов (с пятью овалами внутри и пятью снаружи). Поэтому, – добавил Иван Георгиевич, – очень необходимо серьезно разобрать эту огромную работу по вещественной алгебраической геометрии (использующую и бифуркационные методы физиков): кто же прав, Гильберт или Гудков ?

Хотя эта тема никак меня не касалась, я все же заинтересовался работой Гудкова и стал её читать. Результатом оказался мой восторженный положительный отзыв. Только я не сумел включить в него формулировки пары сотен доказанных Гудковым теорем, и заменил их единым более общим утверждением, содержавшим и все теоремы Гудкова, и еще бесконечный набор далеких обобщений.

Этот общий результат я назвал в своем отзыве «гипотезой Гудкова», так как доказательства этого результата (в самом общем случае) в диссертации не было, а была всего лишь пара сотен частных случаев общего факта.

Дмитрий Андреевич быстро стал моим близким другом, он ежегодно приезжал в Москву из Нижнего, привозил даже своих учеников, и мы проводили в моей квартире в Ясеневе долгие вечера, обсуждая новые теоремы и гипотезы, примеры и контрпримеры последнего года.

Думая о «гипотезе Гудкова», я пришел к выводу, что её утверждение о делимости на 16 Эйлеровой характеристики поверхности с краем, заданной неравенством

{f(x, y)≥0}, должно бы было быть связанным с теоремой топологии четырехугольных гладких многообразий, где на 16 делится сигнатура формы пересечений (на пространстве двумерных гомологий). Вопрос состоял в том, чтобы связать топологию вещественных кривых (задачи Гильберта и гипотезы Гудкова) с вещественно- четырехмерными многообразиями.

Размышляя об этом, я придумал такую конструкцию: для комплексификации неравенства {f(x, y)≥0} заменим его равенством {f(x, y) = z2}, и будем считать координаты (x,y,z) комплексными числами. Тогда поверхность, краем которой является изучаемая кривая {f(x,y)=0}, превратится в двумерную в комплексном смысле (то есть четырехмерную в вещественном смысле) поверхность – к ней можно применять теоремы топологии четырёхмерных многообразий.

Эта идея привела меня к доказательству ослабленного варианта гипотезы Гудкова (со сравнением по модулю 8 вместо сравнения по модулю 16). Через несколько лет

В.А. Рохлин, которому я всё это рассказал, дополнил мои рассуждения своим доказательством «сравнений по модулю 16 в 16-й проблеме Гильберта».