Смекни!
smekni.com

«Геометрические решения экстремальных геометрических задач» (стр. 3 из 3)

8. (МАИ). В основании четырехугольной пирамиды SABCD лежит параллелограмм ABCD. Известно, что расстояния от точек А, B, С, S до середины ребра ВС равны 4. При какой величине угла, образованного плоскостями ACS и SCD, объем пирамиды будет наибольшим?

Заключение.


В настоящее время получило всеобщее признание то, что успех развития многих областей науки и техники существенно зависит от развития многих направлений математики. Математика становится средством решения проблем организации производства, поисков оптимальных решений и, в конечном счете, содействует повышению производительности труда и устойчивому поступательному развитию народного хозяйства.
Использование экстремальных задач при изучении математики оправдано тем, что они с достаточной полнотой закладывают понимание того, как человек ищет, постоянно добивается решения жизненных задач, чтобы получающиеся результаты его деятельности были как можно лучше. Решая задачи указанного типа, наблюдаем, с одной стороны, абстрактный характер математических понятий, а с другой большую эффективную их применимость к решению жизненных практических задач.
Экстремальные задачи помогают ознакомиться с некоторыми идеями и прикладными методами школьного курса математики, которые часто применяются в трудовой деятельности, в познании окружающей действительности. Решение экстремальных задач способствует углублению и обогащению наших математических знаний.

Список использованной литературы.

1. Горнштейн П., Полонский В., Якир М. Геометрические решения экстремальных геометрических задач. Журнал «Квант» № 9/1992. – М.: Бюро «Квантум», 1992.

2. Лысенко Ф.Ф. ЕГЭ вступительные экзамены. Математика – Ростов-на-Дону, 2004.

3. Лаппо Л.Д., Попов М.А. Математика. Практикум по выполнению типовых тестовых заданий ЕГЭ – М.: «Экзамен», 2008

4. Возняк Г. М., Гусев В. А. Прикладные задачи на экстремумы. М.: Просвещение, 1985.

5. Готман Э.Г. Поиск рационального решения задачи на экстремум //Математика в школе. – 1997. - № 6. – С. 40.

6. Прасолов В.В. Задачи по планиметрии. Часть I. – 2-е изд. – М.: Наука, 1991, с. 282.

7. Тихомиров В.М. Рассказы о максимумах и минимумах. – М.: Наука, 1986 (Библиотечка «Квант»)