Смекни!
smekni.com

по дисциплине: «Математика» на тему: «Задачи на клетчатой бумаге» (стр. 5 из 5)

Факт 1. Пусть выпуклый многоугольник имеет площадь больше 4 и начало координат является его центром симметрии. Тогда этот многоугольник содержит ещё хотя бы одну точку с целыми координатами. (Теорема Минковского).

Рис. 1 Эта теорема верна не только для выпуклых многоугольников, но и для выпуклых фигур – фигур, которые с любой парой своих точек содержат и весь отрезок с концами в этих точках. Например, круг и эллипс – выпуклые фигуры, а кольцо – нет.

Смысл этой теоремы состоит в том, что выпуклая фигура, «набирая» площадь 4, не сможет «избежать» захвата узлов сетки. Понятно, что для невыпуклых фигур это не так: они могут «набирать» площадь, «обходя» узлы сетки (рис. 1).

Факт 2. Пусть внутри выпуклой фигуры площади S и периметром 2р лежит узлов решётки. Тогда n > S – р. [10]

Смысл этого факта таков: если мы захотим оградить на клетчатом листке участок (выпуклый) достаточно большой площади и мы сделаем это, «экономно» расходуя ограду, то на участке окажется довольно много узлов сетки. Если же мы будем расходовать ограду «неэкономно», сильно вытягивая участок, то узлов на участке может оказаться не так много.

Кстати, задача о нахождении фигуры наибольшей площади, имеющей данный периметр, давно волновала математиков. Её назвали изопериметрической задачей. Такой фигурой является круг: из всех фигур с данным периметром самую большую площадь

имеет он. (рис. 2 и 3)

Величина S – р велика. Площадь мала, а периметр велик.

Узлов много! Узлов нет!

Рис. 2 Рис. 3

Факт 3. Если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4.

Иными словами, вам ни за что не удастся (попробуйте сами!) нарисовать на клетчатой бумаге выпуклый пяти-, шести-, и т.д. многоугольник с вершинами в узлах сетки так, чтобы ни на его сторонах, ни внутри не было

Рис. 4 других узлов. А вот треугольник или четырёхугольник с таким свойством нарисовать совсем нетрудно!

Конечно, невыпуклые пяти-, шести-, и т.д. многоугольники с таким свойством тоже можно нарисовать (рис. 4).

Факт 4. Из правильных многоугольников только четырёхугольник (квадрат) можно разместить на клетчатом листе так, чтобы все его вершины лежали в узлах сетки. Ни с правильным треугольником, ни с правильным пятиугольником, и т. д., этого сделать нельзя! [2]

(Напомним, что правильным называется многоугольник, у которого все стороны и все углы равны).

Заметим, что квадрат с удобством размещается на клетчатой плоскости не только очевидным образом (когда его стороны Рис. 5

идут по линиям сетки), но и иначе (рис. 5).

Заключение

В процессе исследования мы изучили много справочной, научно-популярной литературы, побывали на сайтах, вызывающих уважение и некоторое благоговение: малый Мехмат МГУ, ФИПИ, прочитали некоторые книги в электронном виде. Мы рассмотрели различные задачи на построение и вычисления, заданные на клетчатой бумаге, научились применять решение таких задач в различных областях математики, подобрали нестандартные задания. Эти задачи отличаются от обычных задач, изложенных в действующих учебниках и задачниках по математике.

Любители головоломок увлекаются решением задач на клетчатой бумаге, прежде всего потому, что универсального метода решения таких задач не существует, и каждый, кто берётся за их решение, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению. Поскольку здесь не требуется глубокое знание геометрии, то любители иногда могут даже превзойти профессионалов-математиков.

Вместе с тем, задачи на клетчатой плоскости не являются несерьёзными или бесполезными, они не так уж и далеки от серьёзных математических задач. Из задач на разрезание родилась теорема Бойаи-Гервина о том, что любые два равновеликих многоугольника равносоставлены (обратное очевидно). Задача на нахождение площади многоугольника с вершинами в узлах сетки сподвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате нашей работы мы расширили свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Мы научились вычислять площади многоугольников, нарисованных на клетчатом листке, встретились с совсем новыми, необычными «расстояниями», узнали, как раскраска клеточек помогает решать многие задачи, познакомились поближе с задачами на разрезание и, наконец, научились играть в увлекательные игры на листке бумаги в клетку.

Рассмотренные нами задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Работа по данной теме позволила нам преодолеть психологический барьер и поверить в свои силы, что является важнейшим фактором успешного решения олимпиадных и экзаменационных задач, выступления перед аудиторией с теоретическим материалом по математике.

Мы пришли к выводу, что тема, которая нас заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша исследовательская группа решила продолжить работу в этом направлении: особенно интересными показались нам задачи на разрезание, «раскраски», задачи на трансформирование, пентамино, разрезание в пространстве. Мы решили составить сборник игр на клетчатой бумаге, которые не только увлекательны и интересны, но и развивают комбинаторно-геометрические навыки, интуицию, воображение.

Список используемой литературы

1. Болотин И. Б., Добрышина Л. Ф. Смоленские математические олимпиады школьников (готовимся к ЕГЭ). Смол. гос. ун-т; Смоленск: СмолГУ, 2008.

2. Геометрия на клетчатой бумаге. Малый МЕХмат МГУ. Режим доступа: http://mmmf.msu.ru/archive/20082009/KanunnikovKuznetsov/2.html

3. Григорьева Г. И. Подготовка школьников к олимпиадам по математике: 5 – 6 классы. Метод. пособие. – М.: Глобус, 2009.

4. Дынкин Е. Б., Молчанов С. А., Розенталь А. Л. Математические соревнования. Арифметика и алгебра. – М.: Наука, 1970.

5. Екимова М. А. ,Кукин Г. П. Задачи на разрезание. М.: МЦНМО, 2002. Режим доступа: http://www.math.ru/lib/files/pdf/kukin.pdf

6. Жарковская Н. М., Рисс Е. А. Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

7. Задачи открытого банка заданий по математике ФИПИ, 2010 – 2011. Режим доступа: http://mathege.ru/or/ege/ShowProblems.html?posMask=32

8. Игнатьев Е. И. В царстве смекалки. – М.: Наука, 1982.

9. Кенгуру – 2010. Задачи, решения, итоги. Режим доступа: http://russian-kenguru.ru/load

10. Прасолов В. В. Задачи по планиметрии. – М.: МЦНМО, 2000.

11. Рисс Е. А. Математический клуб «Кенгуру» Выпуск № 8 (изд. второе). – Санкт-Петербург, 2009.

12. Смирнова И. М., Смирнов В. А. Геометрия на клетчатой бумаге. – М.: Чистые пруды, 2009.

13. Смирнова И. М., Смирнов В. А. Геометрические задачи с практическим содержанием. – М.: Чистые пруды, 2010.

14. Смирнов В. А. ЕГЭ. Математика. Задача В6. Планиметрия. Р/т. – М.: МЦНМО, 2011.

15. Трошин В. В. Занимательные дидактические материалы по математике. Сборник заданий. Выпуск 2. – М.: Глобус, 2008.

16. Гарднер М. Математические чудеса и тайны. – М.: Наука, 1986.