Смекни!
smekni.com

«Тайны математики» (стр. 2 из 4)

7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4

Это первый магический квадрат, относящийся к разновидности так называемых "дьявольских" квадратов.

В «Общей таблице магических квадратов в четыре» Френикль привёл все 880 магических квадратов четвёртого порядка. Таблица занимает 43 страницы книги. Трудно представить себе, сколько времени заняла у Френикля эта работа. В 1705 г. в Париже было издано сочинение уже упомянутого ранее Филиппа де Лягира «Новые начертания и соображения о магических квадратах с их демонстрацией. Начертания магических квадратов при четном числе клеток в основании». Эта работа особенно интересна тем, что в ней Лягир впервые рассмотрел и описал особый тип магического квадрата, который он назвал «панмагическим». В нем содержится наибольшее число равных сумм чисел. В дальнейшем квадраты этого типа называли, также, «дьявольскими», «сатанинскими», «чертовскими». Дьявольский магический квадрат — магический квадрат, в котором с константой совпадают также суммы чисел по ломаным диагоналям в обоих направлениях.

Ломаной диагональю называется диагональ, которая, дойдя до границы квадрата, продолжается параллельно первому отрезку от противоположного края (на рисунке такую диагональ образуют закрашенные клетки).

b
а

Существует всего три дьявольских квадрата 4×4:

1 12 7 14
8 13 2 11
10 3 16 5
15 6 9 4
1 8 11 14
12 13 2 7
6 3 16 9
15 10 5 4

Современные математики называют подобные квадраты «совершенными». Стало быть, «совершенный» и «дьявольский» для современных математиков – синонимы!

Но есть еще один МК не менее интересный, чем дьявольский. Выдающийся американский масон, ученый, общественный деятель и дипломат Бенджамин Франклин составил квадрат 16×16, который помимо наличия постоянной суммы 2056 во всех строках, столбцах и диагоналях имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4×4 и уложить этот лист на большой квадрат так, чтобы 16 клеток большего квадрата попали в эту прорезь, то сумма чисел, появившихся в этой прорези, куда бы мы ее не положили, будет одна и та же – 2056.

Этот квадрат является самым магически-магическим из всех МК, составленных когда-либо каким-либо магом.

1.4. Магический квадрат Ян Хуэя (Китай). В 13 в. математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков. Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37):

27 29 2 4 13 36
9 11 20 22 31 18
32 25 7 3 21 23
14 16 34 30 12 5
28 6 15 17 26 19
1 24 33 35 8 10

Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12). Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.

1.5. Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.

Если в квадратную матрицу n × n заносится не строго натуральный ряд чисел, то данный магический квадрат — нетрадиционный. Ниже представлены два таких магических квадрата, заполненные в основном простыми числами. Первый имеет порядок n=3 (квадрат Дьюдени); второй (размером 4x4) — квадрат Джонсона. Оба они были разработаны в начале двадцатого столетия:

3 61 19 37
43 31 5 41
7 11 73 29
67 17 23 13

Есть еще несколько подобных примеров:

17 89 71
113 59 5
47 29 101
1 823 821 809 811 797 19 29 313 31 23 37
89 83 211 79 641 631 619 709 617 53 43 739
97 227 103 107 193 557 719 727 607 139 757 281
223 653 499 197 109 113 563 479 173 761 587 157
367 379 521 383 241 467 257 263 269 167 601 599
349 359 353 647 389 331 317 311 409 307 293 449
503 523 233 337 547 397 421 17 401 271 431 433
229 491 373 487 461 251 443 463 137 439 457 283
509 199 73 541 347 191 181 569 577 571 163 593
661 101 643 239 691 701 127 131 179 613 277 151
659 673 677 683 71 67 61 47 59 743 733 41
827 3 7 5 13 11 787 769 773 419 149 751

Последний квадрат, построенный в 1913 г. Дж.Н.Манси, примечателен тем, что он составлен из 143 последовательных простых чисел за исключением двух моментов: привлечена единица, которая не является простым числом, и не использовано единственное чётное простое число 2.

В 1917 г. на франко-германском фронте, унтер-офицер Франц Буль,занимаясь мародерством на поле боя, нашел в кармане убитого солдата-индуса длинную полоску плотной бумаги, которая была исписана квадратами, разделенными на клетки, заполненными арабской вязью. Он передал эту полоску немецкому профессору, который занимался магическими квадратами. Скорее всего, полоска содержала талисман, не спасший, однако, его обладателя от смерти.

После перевода с арабского языка, выяснилось, что документ содержит магический квадрат 3-его порядка и полумагический квадрат 4-ого порядка. В квадрате 4 × 4 числа повторяются, и суммы диагоналей не совпадают с константой:

Затем следовал список заклинаний, имён богов и демонов, который профессор просто оторвал и уничтожил.

Глава II. Основная терминология

Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n2 клеток и называется квадратом n-го порядка.

В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n(n2 + 1)/2. Доказано, что n ≥ 3. Зависимость постоянной квадрата от его порядка можно проследить с помощью таблицы.

Две диагонали, проходящие через центр квадрата, называются главными диагоналями.

Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края (такую диагональ образуют заштрихованные клетки на рисунке.

Клетки, симметричные относительно центра квадрата, называются кососимметричными. Таковы, например, клетки a и b.

Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы, некоторые из которых мы рассмотрим ниже.