Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к π очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в
Мадхава смог вычислить π как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа π, из которых 16 верные.
Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа π с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа π. Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число π иногда называли «лудольфовым числом», или «константой Лудольфа».
Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета
найденная Франсуа Виетом в 1593 году.
Другим известным результатом стала формула Валлиса:
выведенная Джоном Валлисом в 1655 году.
Ряд Лейбница, первым найден Мадхавой из Сангамаграма в 1400 году
В новое время для вычисления π используются аналитические методы, основанные на тождествах.
Эйлер, автор обозначения π, получил 153 верных знака.
Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом , у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными.
Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. [1]
2.2.3 Эра цифровых компьютеров.
Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков π
С появлением компьютеров темпы возросли:
1949 год - 2037 десятичных знаков (Джон фон Нейман, ENIAC),
1958 год - 10000 десятичных знаков (Ф.Женюи, IBM-704),
1961 год - 100000 десятичных знаков (Д.Шенкс, IBM-7090),
1973 год - 10000000 десятичных знаков (Ж.Гийу, М.Буйе, CDC-7600),
1986 год - 29360000 десятичных знаков (Д.Бейли, Cray-2),
1987 год - 134217000 десятичных знаков (Т.Канада, NEC SX2),
1989 год - 1011196691 десятичных знаков (Д.Чудновски и Г.Чудновски, Cray-2+IBM-3040). Они же добились в 1991 году 2260000000 знаков,
а в 1994 году - 4044000000 знаков.
Дальнейшие рекорды принадлежат японцу Тамуре Канада: в 1995 году 4294967286 знаков,
в 1997 – 51539600000.
К 2011 году ученые смогли вычислить значение числа π с точностью в 10 триллионов цифр после запятой! [5]
2.3 Экспериментальные методы уточнения числа π.
К известным методам уточнения Пи (подбором деления пар чисел, вписывания в круг многоугольника и вычисления сумм рядов) во второй половине прошлого века добавились еще три, которые можно назвать экспериментальными.
Первый, так называемый "метод иглы Бюффона". Нужно взять иглу (лучше с отломанным острием, чтобы игла была равномерной толщины) длиной 2 сантиметра и лист бумаги. На листе провести параллельные линии, отделенных одна от другой расстоянием вдвое больше длины иглы. Чтобы игла не подпрыгивала, подкладывают под бумажный лист сукно. Затем роняют иглу сто, или лучше тысячу раз, отмечают, было ли пересечение. Если потом разделить общее число падений иглы на число случаев, когда было замечено пересечение, то в результате должно получиться приближенно число π.
Мы бросали иглу 600 раз. 179 раз она пересекала линии. Мы получили 600/179≈3,35195530726…
Но как бросание иглы может быть связано с числом π? Оказывается, метод иглы Бюффона базируется на методах теории вероятностей.
Пусть число пересечений , например будет К, а длина иглы 20 мм. В случае пересечения точка встречи должна лежать на каком-либо из этих миллиметров, и ни один из них, ни одна часть иглы, не имеет в этом отношении преимущество перед другими. Поэтому число пересечений каждого миллиметра равно К/20. Вероятнейшее число пересечений прямо пропорционально длине иглы.
Эта пропорциональность сохраняется даже, если игла изогнута. К примеру, если игла изогнута так, что один участок - 11мм, а другой - 9мм, то все равно 9К/20+ 11К/20=К/20.
Можно бросать иглу в форме окружности с диаметром, равным расстоянию между двумя параллельными линиями. При одном бросании края окружности должны дважды касаться линий.
Получается: π ≈ число бросаний / число пересечений
В середине XVIII в. Шведский астроном Р.Вольф наблюдал 5000 падений иглы на разграфленную бумагу и получил в качестве π =3,159.
Отношение длины к окружности к диаметру находится здесь опытным путем, причем не чертят ни окружности, ни диаметра! Человек, не знающий геометрию, круг, может найти число π по этому способу, если терпеливо проделает весьма большое число бросаний иглы.
Второй метод, придуманный Г.А. Гальпериным, и называемый Пи-бильярдом, основан на оригинальной модели. При столкновении двух шаров, меньший из которых находится между большим и стенкой, и больший движется к стенке, число соударений шаров позволяет вычислить π со сколь угодно большой наперед заданной точностью. Надо только запустить процесс и посчитать число ударов шаров.
Для третьего метода можно воспользоваться известным предположением теории чисел: вероятность, что два числа взаимно просты, равна 6/π2. (Взаимно простыми называются числа, не имеющие общих делителей кроме единицы). [3]
2.4 Поэзия цифр числа π.
Рассмотрим внимательно его первую тысячу знаков, проникнемся поэзией этих цифр, ведь за ними стоят тени величайших мыслителей Древнего мира и Средневековья, Нового и настоящего времени.
3,
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989 [4]
Интересные данные о распределении цифр числа π. Некто не поленился, посчитал (для миллиона цифр после запятой):
нулей - 99959,
единиц -99758,
двоек -100026,
троек - 100229,
четвёрок- 100230,
пятёрок - 100359,
шестёрок- 99548,
семёрок - 99800,
восьмёрок - 99985,
девяток -100106.
Цифры десятичного представления числа π достаточно случайны. В нем присутствует любая последовательность цифр, просто надо ее найти. В этом числе присутствуют в закодированном виде все написанные и не написанные книги, любая информация, которая может быть выдумана, уже заложена в π. Надо только рассмотреть побольше знаков, найти нужный участок и расшифровать его. Здесь каждый может найти номер своего телефона, дату своего рождения или домашний адрес. [4]
Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен. В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых! Позже он сгенерировал на основе этого рисунка цветовую картину с помощью специального алгоритма.
Длинные числа, приближенно выражающие значение π, не имеют ни практической, ни теоретической ценности. Если бы мы пожелали, например, вычислить длину земного экватора с точностью до 1 см, предполагая, что заем длину его диаметра точно, то для этого нам вполне достаточно было бы взять всего 9 цифр после запятой в числе π. А взяв вдвое больше цифр (18), мы могли бы вычислить длину окружности, имеющей радиусом расстояние от Земли до Солнца, с погрешностью не свыше 0,0001 мм (в 100 раз меньше толщины волоса!).
Чрезвычайно ярко показал абсолютную бесполезность даже первой сотни десятичных знаков числа π наш соотечественник, математик Граве. Он подсчитал, что если представить себе шар, радиус которого равен расстоянию от Земли до Сириуса, т.е. числу километров, равному 132 с десятью нулями: 132 ∙ 1010, наполнить этот шар микробами, полагая в каждом кубическом миллиметре шара по одному биллиону 1010 микробов, затем все эти микробы расположить на прямой линии так, чтобы расстояние между каждыми двумя соседними микробами снова равнялось расстоянию от Сириуса до Земли, то, принимая этот фантастический отрезок за диаметр окружности, можно было бы вычислить длину получившейся гигантской окружности с микроскопической точностью-до 1/1000000 мм, беря 100 знаков после запятой в числе π. Правильно замечает французкий астроном Араго, что «в смысле точности мы ничего не выиграли бы, если бы между длиною окружности и диаметром существовало отношение, выражающееся числом вполне точно».