Смекни!
smekni.com

«Удивительное число π» (стр. 1 из 3)

Муниципальное автономное образовательное учреждение

«Давыдовская гимназия»

РЕФЕРАТ

по математике на тему: «Удивительное число π»

Выполнили:

Лысенко Евгения Геннадьевна,

Момотова Алена Александровна,

ученицы 8 класса

Руководитель:

Владимирова Ольга Григорьевна,

учитель математики

Давыдово 2012

СОДЕРЖАНИЕ

1. Введение . . . . . . . . . 3

2. Основная часть . . . . . . . . 4

2.1 Обозначение числа π. . . . . . 4

2. 2 История числа π . . . . . . . 4

2. 2.1 Древний период . . . . . . . 5

2. 2.2 Классический период . . . . . . 9

2.2.3 Эра цифровых компьютеров . . . . . 11

2.3 Экспериментальные методы уточнения числа π . . 12

2.4 Поэзия цифр числа π . . . . . . 14

3. Заключение . . . . . . . . 19

4. Список литературы . . . . . . . 21

Введение

14 марта, во всем мире отмечается День числа «пи». Этот праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, подметивший, что в американской системе записи дат (месяц/число) дата 14 марта (3.14) и время 1:59 совпадает с первыми цифрами числа π = 3,14159). Обычно День числа «пи» празднуют в 1:59 дня по местному времени (в 12-часовой системе). К празднику пекут (или покупают) пироги (торты), поскольку по-английски π произносится как «пай», что по звучанию совпадает со словом pie («пирог»). Специальные торжества проходят в научных обществах и учебных заведениях. Интересно, что праздник числа Пи, отмечающийся 14 марта, совпадает с днем рождения одного из наиболее выдающихся физиков современности Альбертом Эйнштейном. [7]

Нас заинтересовало это число. Кто первый догадался о связи длины окружности с его диаметром? Кто первый вычислил его значение? Какова история этого числа? Почему это число назвали «π»?

Цель работы: познакомиться с числом π, изучить историю его открытия методы нахождения

Задачи:

- изучить историю открытия числа π;

- изучить, методы нахождения числа π;

- сделать выводы.

2.Основная часть

2.1Обозначение числа π.

Мы знаем, кто построил первый самолет, кто изобрел радио, а вот кто первый догадался о связи между длиной окружности и ее диаметра не знает никто. Но известно когда появилось первое обозначение данного числа буквой. Считается, что впервые данное обозначение ввел английский преподаватель Уильям Джонсон(1675- 1749) в своей работе «Обозрение достижений математики», вышедшей в 1706 году. Еще раньше в 1647 году, английский математик Оутред применил букву π для обозначения длины окружности. Предполагается, что к этому обозначению его подтолкнуло первая буква греческого алфавита слова περιφερια – окружность. Но международным стандартом обозначение π для числа 3, 141592 … стало после того как его применил знаменитый русский академик, математик Леонард Эйлер в своих трудах в 1737 году. Он писал: «Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

» [1]

2.2 История числа π.

Считается, что число π было впервые открыто вавилонскими магами. Оно использовалось при строительстве знаменитой Вавилонской башни, история которой вошла в Библию. Однако недостаточно точное исчисление привело к краху всего проекта.

Считается также, что число Пи лежало в основе строительства знаменитого Храма царя Соломона.

История числа π шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого π изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров. [1]

2.2.1 Древний период.

Любой школьник вычисляет теперь длину окружности по диаметру гораздо точнее, чем мудрейший жрец древней страны пирамид или самый искусный архитектор великого Рима. В глубокой древности считалось, что окружность ровно в 3 раза длиннее диаметра. Эти сведения содержатся в клинописных табличках Древнего междуречья. Такое же значение можно увидеть в тексте библии: «И сделал литое из меди море, - от края его до края десять локтей, - совсем круглое … и снурок в тридцать локтей обнимал его кругом». Однако уже во II тысячелетии до н.э. математики Древнего Египта находили более точное отношение. В папирусе Райнда, который датируется примерно 1650 г. до н. э. для числа π приводится значение (16/9)2, это приблизительно 3,16. Древние римляне считали, что окружность длиннее диаметра в 3,12, между тем правильное отношение – 3, 14159… Египетские и римские математики установили отношение длины окружности к диаметру не строгим геометрическим расчетом, как позднейшие математики, а нашли его просто из опыта. Но почему получались у них такие ошибки? Разве не могли они обтянуть какую-нибудь круглую вещь ниткой и затем, выпрямив нитку, просто измерить её? [2]

Возьмем, например, вазу с круглым дном диаметром в 100 мм. Длина окружности должна равняться 314 мм. Однако на практике, измеряя ниткой, мы едва ли получим эту длину: легко ошибиться на один миллиметр, и тогда π окажется равным 3,13 или 3,15. А если учесть, что и диаметр вазы нельзя измерить вполне точно, что и здесь ошибка в 1 мм весьма вероятна, то для π получаются довольно широкие пределы между 3,09 и 3,18.

Мы решили провести несколько опытов. Для этого провели несколько окружностей. С помощью нитки и линейки измерили длину каждой окружности и ее диаметр. Затем разделили длину окружности на ее диаметр. Мы получили следующие результаты.

Длина окружности Диаметр π
1 14,5 см 5см 2,9
2 31см 10 см 3,1
3 10см 3 см 3,(3)
4 19,5см 6,5 см 3
5 16,5 см 5см 3,5
6 18 см 6 см 3
7 35 см 11см 3, (18)
8 20, 5см 6,5см 3,15
9 22см 6,9 см 3,19
10 21см 3 см 3
11 13 см 4см 3,25
12 6 см 1,7 см 3,5
13 12см 4см 3
14 12,5 см 4 см 3, 125
15 26см 8см 3,25
16 38см 12см 3,2

Среднее значение – 3,168

Определяя π указанным способом, можно получить результат, не совпадающий с 3,14: один раз получим 3,1, другой раз 3,12, третий 3,17 и т.п. Случайно может оказаться среди них и 3,14, но в глазах вычислителя это число не будет иметь больше веса, чем другие.

Такого рода опытный путь никак не может дать сколько-нибудь приемлемого значения для π. В связи с этим становится более понятным, почему древний мир не знал правильного отношения длины окружности к диаметру.

С 4 в до н.э. математическая наука стремительно развивалась в Древней Греции. Древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру, а площадь круга равна половине произведения длины окружности и радиуса S = ½ С R = π R2 . Это доказательство приписывают Евклиду Книдскому и Архимеду.

Архимед в сочинении «Об измерении круга» вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников – от 6- до 96-угольника. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку

Таким образом, он установил, что число π заключено в пределах

3,1408 < π < 3,1428. Значение 22/7 до сих пор считается вполне хорошим приближением числа π для прикладных задач.

В «Алгебре» древнего арабского математика Магомета-бен-Муза о вычислении длины окружности читаем такие строки: «Лучший способ-это умножить диаметр на 3 1/7 . Это самый скорый и самый легкий способ. Богу известно лучшее».

Чжан Хэн во 2 веке уточнил значение числа π, предложив два его эквивалента: 1) 92/29 ≈ 3,1724…, 2) √10.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416.

Брахмагупта в 7 веке предложил в качестве приближения √10.

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный алгоритм для вычисления π с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для π, π≈3,14159.

Позднее Лю Хуэй придумал быстрый метод вычисления π и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что π≈355/113, и показал, что 3,1415926 < π < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа π в течение последующих 900 лет.

До II тысячелетия было известно не более 10 цифр π. [1]

2.2.2 Классический период.

Дальнейшие крупные достижения в изучении π связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить π с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов