а) б)
Рис. 2 Частотные характеристики четырехполюсника для коэффициента передачи тока Кi: а)АЧХ для Кi; б) ФЧХ для Кi.
Если схема четырехполюсника известна, то эти коэффициенты могут быть найдены расчетным путем, используя законы Ома и Кирхгофа, метод контурных токов или узловых потенциалов, а также простейшие преобразования цепи. Все эти методы предполагают постановку и решение прямой задачи электротехники, т.е. произвольное задание источника энергии на входных зажимах и последующий поиск тока или напряжения в ветви, присоединенной к выходным зажимам .Однако существует метод непосредственного определения частотных характеристик четырехполюсника по известным А параметрам четырехполюсника.
Для более сложных цепей есть возможность разбиения исходной цепи на группу каскадное соединенных звеньев. Каскадным называется такое соединение двух и более четырехполюсников, когда выходные зажимы предыдущего четырехполюсника соединяются с входными зажимами последующего.
Рис. 3. Каскадное соединение четырехполюсников
Известно правило объединения матриц каскадное соединенных четырехполюсников: при каскадном соединении перемножаются матрицы А параметров, и задача исследователя заключается в разбиении исходной цепи на группу простейших каскадное соединенных четырехполюсников с известными А параметрами.
Если число каскадно-соединенных звеньев больше двух, то следует перемножать матрицы в той последовательности, в которой стоят четырехполюсники, помня о том, что перемножение матриц обладает сочетательным свойством, но не коммутативно, т.е. . Пассивный четырехполюсник состоит из индуктивностей, емкостей, резисторов.
Затухание четырехполюсника - величина, характеризующая уменьшение напряжения U , тока I или мощности P = I * U при передаче через четырехполюсник.
Затухание измеряется в децибелах:
а) мощности P1 и P2
б) напряжения U1 и U2
Затухание в четырехполюснике зависит от сопротивления генератора и нагрузки. Активный четырехполюсник передает в нагрузку мощность, большую поступающей в него; состоит из источников ЭДС, электронных усилительных ламп, транзисторов.
Коэффициент усиления - отношение величины напряжения, тока или мощности на выходе четырехполюсника к соответствующей величине на входе. Усиление зависит от сопротивления генератора и нагрузки.
Модуль входного сопротивления
Модуль выходного сопротивления четырехполюсника равен отношению приращения выходного напряжения к соответствующему изменению величины выходного тока.
Фильтр - четырехполюсник, служащий для передачи в нагрузку мощности электрического тока определенного диапазона частот в области прозрачности фильтра. В области непрозрачности фильтра мощность тока передается в нагрузку с большим затуханием.
Фильтры нижних частот (обрезающие) имеют область прозрачности для частот ниже граничной частоты
Сглаживающий фильтр - обрезающий фильтр, который служит для выделения постоянной составляющей. Его граничная частота лежит ниже основной гармонической частоты сигнала. Фильтры верхних частот (обрезающие) имеют область прозрачности для частот выше граничной частоты
1)Прохождение прямоугольного импульса через RC-цепь. При подаче на вход RC-цепи прямоугольного импульса напряжения в первый момент времени t1 в схеме возникает скачек тока, равный по величине U/R . По мере загрузки конденсатора напряжение на нем возрастает по экспоненте с постоянной времени
В результате на выходе RC-цепи (на резисторе) появляются два импульса - положительный, совпадающий по времени с передним фронтом входного импульса, и отрицательный импульс, совпадающий с задним фронтом входного импульса. Такая цепочка называется дифференцирующей RC-цепью.
2)Прохождение прямоугольного импульса через RL-цепь. При подаче на вход RL-цепи прямоугольного импульса напряжения в первый момент времени t1 ток в цепи равен нулю, так ток через индуктивность не может измениться скачком. Затем ток экспоненциально нарастает с постоянным временем
Системы безопасности строятся из отдельных приборов, соединяемых между собой кабелями. При инсталляции системы, а также при ее эксплуатации возможны ситуации, когда система не работает должным образом. В данной публикации не рассматривается поиск дефектов в самих приборах, цель статьи более скромная - помочь специалисту в отыскании дефектов в межблочных соединениях.
Для отыскания дефектов в монтаже удобно использовать модель Г-образного четырехполюсника (к каскадному соединению которых можно свести большинство радиоэлектронных устройств).
Точка в монтаже системы безопасности, в которой выходное напряжение существенно отличается от нормы, можно назвать точкой дефекта. Для Г-образного четырехполюсника такой точкой может быть его выход.
При поиске дефекта наибольший интерес представляет такой Г-образный четырехполюсник, у которого входное напряжение U1 соответствует номинальному, а выходное напряжение U2 в точке дефекта существенно отличается от номинального.
При этом возможны следующие варианты:
· U2 = 0, если Z1 = ∞ (обрыв в последовательной ветви) или Z2 = 0 (короткое замыкание в параллельной ветви);
· U2 = U1, если Z1 = 0 или Z2 = ∞;
· U2 меньше нормы, если Z1 увеличилось или Z2 уменьшилось;
· U2 больше нормы, если Z1 уменьшилось, или Z2 увеличилось.
Вообще говоря, возможен и такой случай, когда U2 становится больше U1. Это говорит о том, что появился неочевидный источник напряжения (например, из-за нарушения изоляции между соседними проводами).
Рассмотренные соотношения справедливы как для линейных, так и нелинейных четырехполюсников, как для частотно-зависимых, так и частотно-независимых.
Отметим, что не столь важно точное значение напряжения U2 – при ремонте достаточно обнаружить его качественное изменение как следствие неисправности элементов Z1 и Z2.
Одновременно дефектными оба элемента четырехполюсника бывают крайне редко; чаще из строя выходит один элемент, а уже вследствие этого другой.