Смекни!
smekni.com

работа По предмету: Основы электроники и схемотехники На тему: «Четырехполюсник» (стр. 3 из 3)

Параметры радиоэлементов могут изменяться во времени вплоть до выхода из поля допуска. При поиске дефектов следует учитывать закономерности изменения параметров радиоэлементов:

· сопротивление резистора не может уменьшиться по сравнению с первоначальным,

· емкость конденсатора не может возрасти по сравнению с первоначальной,

· у конденсатора может появиться проводимость.

В схему дефектного Г-образного четырехполюсника может входить не два элемента, а значительно больше. Поэтому в качестве Z1 следует рассматривать все последовательно включенные элементы от точки, где напряжение U соответствует норме, вплоть до точки дефекта. В качестве Z2 должны рассматриваться все элементы, включенные параллельно выходу четырехполюсника.

Коэффициент шума четырехполюсника

Коэффициент шума (дифференциальный) четырехполюсника определяется как отношение суммарной мощности шума на выходе от всех причин, к мощности шума на выходе при условии, что сам четырехполюсник не шумит; причем на входе источник шума находится при стандартной температуре T0 =290o K.

Коэффициент шума – эта характеристика четырехполюсника и она не зависит от мощности сигнала и шума на входе. Поэтому в качестве источника шума на входе выбирается генератор шума, который излучает ту же мощность, что и резистор, равный опорному сопротивлению Zo (обычно 50 Ом). Теперь рассмотрим четырехполюсник с вынесенными из него шумами, описанными как автономные шумовые генераторы 1 и 2. Коэффициент шума не зависит от нагрузки, а точнее, не зависит от рассогласования на выходе (поскольку мощности зависят одинаково). Собственные шумы нагрузки учитываются в шумах следующего каскада.
Так как коэффициент шума не зависит от нагрузки, то положим, что на выходе включено сопротивление:

.

Пассивные LC-фильтры обычно представляют собой реактивный лестничный четырехполюсник, включенный между генератором с активным внутренним сопротивлением и нагрузкой с активным сопротивлением R. Входное сопротивление реактивного четырехполюсника, нагруженного на сопротивление. Каскадное соединенные четырехполюсники с согласованными характеристическими сопротивлениями могут быть замещены одним четырехполюсником, имеющим характеристические сопротивления, равные входному характеристическому сопротивлению первого и выходному характеристическому сопротивлению последнего четырехполюсника. Мера передачи g результирующего четырехполюсника определяется алгебраической суммой мер передачи составных четырехполюсников.
Отсюда следует, что каскадное соединенные четырехполюсники с согласованными характеристическими сопротивлениями могут быть замещены одним четырехполюсником, имеющим характеристические сопротивления, равные входному характеристическому сопротивлению первого и выходному характеристическому сопротивлению последнего четырехполюсников. Мера передачи результирующего четырехполюсника определяется алгебраической суммой мер передачи составных четырехполюсников.
Постоянная передача цепочки, как и всякого симметричного четырехполюсника, определяется выражением, которое совпадает с модулем выражения для коэффициента усиления четырехполюсника с ООС.

Передаточная функция для линейного четырехполюсника определяется только внутренней структурой четырехполюсника и параметрами ее элементов и не зависит от характера возмущения на ходе прибора.
Вид частотных и фазовых характеристик четырехполюсника определяется соответственно модулем и аргументом его передаточной функции. При синтезе четырехполюсника по рабочим параметрам задаются рабочей передаточной функцией или ее модулем и аргументом. Рассмотрение характеристики рабочего затухания в децибелах упрощается при использовании квадрата рабочего ослабления. Соответственно при синтезе четырехполюсников принято задавать не частотную характеристику.

На входе четырехполюсника действует сигнал, который необходимо усилить. Основными показателями усиления будут следующие параметры:
Если на входе четырехполюсника действует колебательное напряжение с огибающей, изменяющейся по закону Е (t).
Если на входе четырехполюсника действует единичный импульс ЭДС, обладающий спектральной плотностью, равной единице для всех частот. Следовательно, отклик на единичный импульс, т. е. импульсная характеристика цепи, легко определяется с помощью обратного преобразования Фурье, примененного к передаточной функции;
Если на входе линейного четырехполюсника действует сигнал произвольной формы в виде ЭДС(t), то, применяя спектральный метод, нужно определить спектральную плотность входного сигнала.
Коэффициенты четырехполюсника можно определить из решения системы уравнений, что весьма трудоемко при сложной цепи. Проще найти эти коэффициенты для имеющегося четырехполюсника из опыта. Вследствие линейности четырехполюсника коэффициенты не зависят от значений токов и напряжений на входе и выходе.


Методы измерения рабочего затухания и рабочего усиления четырёхполюсника

Методы измерения рабочего затухания и рабочего усиления четырёхполюсника. Схемы измерения, источники погрешностей. Затухание энергетическая мера передачи гармонического сигнала через четырёхполюсник. Различают 3 вида затухания: рабочее, вносимое и собственное, которые характеризуют четырёхполюсники, предназначенные для передачи информации. Рабочее затухание определяется по формуле дБ P1 кажущаяся мощность, которую может отдать генератор на согласованную с ним нагрузку. Величины Р1 и Р2 связаны с величиной ЭДС генератора Е и напряжением на нагрузке Uн известными соотношениями, где Zн и Zr - модули полных сопротивлений генератора и нагрузки. Существует 2 метода измерения рабочего затухания и усиления четырёхполюсника: Метод известного генератора Метод известного генератора Метод известного генератора основан на использовании измерительного генератора с известным внутренним сопротивлением Zr и ЭДС. Для определения рабочего затухания четырёхполюсника этим методом достаточно измерить напряжение U на выходе четырёхполюсника. Можно напряжение на нагрузке определить с помощью измерителя уровня. Схема измерения рабочего затухания методом известного генератора. Данный режим измерения позволяет ускорить и автоматизировать процесс снятия частотных характеристик рабочего затухания. Значение ЭДС и внутреннего сопротивления генератора в рабочем диапазоне частот могут изменяться под влиянием паразитных параметров входного блока генератора и колебания значения сопротивления нагрузки, поэтому во время измерения рабочего затухания необходимо следить за постоянством ЭДС и внутреннего сопротивления генератора. Для стабилизации параметров на выходе генератора часто включают резисторные удлинители, представляющие собой звенья Т и П-образных четырёхполюсников, затухание которых соответствует затуханию электрически длинной линии, т.е. 15-20дБ. В результате получают известный генератор с более стабильными параметрами.

Метод известного генератора

Метод известного генератора основан на использовании измерительного генератора с известным внутренним сопротивлением Zr и ЭДС Е. Для определения рабочего затухания четырёхполюсника этим методом достаточно измерить напряжение U на выходе четырёхполюсника. Можно напряжение на нагрузке определяет с помощью измерителя уровня. Данный режим измерения позволяет ускорить и автоматизировать процесс снятия частотных характеристик рабочего затухания. Значение ЭДС и внутреннего сопротивления генератора в рабочем диапазоне частот могут изменяться под влиянием паразитных параметров входного блока генератора и колебания значения сопротивления нагрузки, поэтому во время измерения рабочего затухания необходимо следить за постоянством ЭДС и внутреннего сопротивления генератора. Для стабилизации параметров на выходе генератора часто включают резисторные удлинители, представляющие собой звенья Т и П-образных четырёхполюсников, затухание которых соответствует затуханию электрически длинной линии, т.е. 15-20дБ. В результате получают «известный» генератор с более стабильными параметрами: внутренним сопротивлением, равным характеристическому сопротивлению удлинителя, и ЭДС, равной напряжению на выходе без нагрузки. Погрешность измерения рабочего затухания методом известного генератора определяется в основном погрешностью измерительного прибора и составляет обычно 0,1-0,8 дБ.

Параметры транзистора как четырехполюсника. h-параметры

Биполярный транзистор в схемотехнических приложениях представляют как четырехполюсник и рассчитывают его параметры для такой схемы. Для транзистора как четырехполюсника характерны два значения тока I1 и I2 и два значения напряжения U1 и U2 (рис. 4).

Рис. 4. Схема четырехполюсника

В зависимости от того, какие из этих параметров выбраны в качестве входных, а какие в качестве выходных, можно построить три системы формальных параметров транзистора как четырехполюсника. Это системы z-параметров, y-параметров и h-параметров. Рассмотрим их более подробно, используя линейное приближение.

Система z-параметров

Зададим в качестве входных параметров биполярного транзистора как четырехполюсника токи I1 и I2, а напряжения U1 и U2 будем определять как функции этих токов. Тогда связь напряжений и токов в линейном приближении будет иметь вид:

Коэффициенты zik в этих уравнениях определяются следующим образом:

- определяются как входное и выходное сопротивления.

- сопротивления обратной и прямой передач.

Измерения z-параметров осуществляются в режиме холостого хода на входе (I1 = 0) и выходе (I2 = 0). Реализовать режим разомкнутого входа I1 = 0 для биполярного транзистора достаточно просто (сопротивление эмиттерного перехода составляет всего десятки Ом и поэтому размыкающее сопротивление в цепи эмиттера в несколько кОм уже позволяет считать I1 = 0). Реализовать режим разомкнутого выхода I2 = 0 для биполярного транзистора сложно (сопротивление коллекторного перехода равняется десяткам МОм и размыкающее сопротивление в цепи коллектора в силу этого должно быть порядка ГОм).

Система y-параметров

Зададим в качестве входных параметров биполярного транзистора как четырехполюсника напряжения U1 и U2, а токи I1 и I2 будем определять как функции этих напряжений. Тогда связь токов и напряжений в линейном приближении будет иметь вид:

Коэффициенты в уравнениях имеют размерность проводимости и определяются следующим образом:

- входная и выходная проводимости.

- проводимости обратной и прямой передач.

Измерение y-параметров происходит в режиме короткого замыкания на входе (U1 = 0) и выходе (U2 = 0). Реализовать режим короткого замыкания на входе (U1 = 0) для биполярного транзистора достаточно сложно (сопротивление эмиттерного перехода составляет всего десятки Ом и поэтому замыкающее сопротивление в цепи эмиттера должно составлять доли Ома, что достаточно сложно). Реализовать режим короткого замыкания на выходе U2 = 0 для биполярного транзистора просто (сопротивление коллекторного перехода равняется десяткам МОм и замыкающие сопротивления в цепи коллектора могут быть даже сотни Ом).

Система h-параметров

Система h-параметров используется как комбинированная система из двух предыдущих, причем из соображений удобства измерения параметров биполярного транзистора выбирается режим короткого замыкания на выходе (U2 = 0) и режим холостого хода на входе (I1 = 0). Поэтому для системы h-параметров в качестве входных параметров задаются ток I1 и напряжение U2, а в качестве выходных параметров рассчитываются ток I2 и напряжение U1, при этом система, описывающая связь входных I1, U2 и выходных I2, U1 параметров, выглядит следующим образом:

Значения коэффициентов в уравнении для h-параметров имеют следующий вид:

- входное сопротивление при коротком замыкании на выходе;

- выходная проводимость при холостом ходе во входной цепи;

- коэффициент обратной связи при холостом ходе во входной цепи;

- коэффициент передачи тока при коротком замыкании на выходе.

Эквивалентная схема четырехполюсника с h-параметрами приведена на рисунке 5. а, б. Из этой схемы легко увидеть, что режим короткого замыкания на выходе или холостого хода на входе позволяет измерить тот или иной h-параметр.

Рис. 5. Эквивалентная схема четырехполюсника:
а) биполярный транзистор в схеме с общей базой;

б) биполярный транзистор в схеме с общим эмиттером.

Рассмотрим связь h-параметров биполярного транзистора в схеме с общей базой с дифференциальными параметрами. Для этого воспользуемся эквивалентной схемой биполярного транзистора на низких частотах, показанной на рисунке 5, а также выражениями для вольтамперных характеристик транзистора в активном режиме. Получаем:

Для биполярного транзистора в схеме с общим эмиттером (рис. 5.б) выражения, описывающие связь h-параметров с дифференциальными параметрами, будут иметь следующий вид:

Для различных схем включения биполярного транзистора (схема с общей базой, общим эмиттером и общим коллектором) h-параметры связаны друг с другом. В таблице 2 приведены эти связи, позволяющие рассчитывать h-параметры для схемы включения с общей базой, если известны эти параметры для схемы с общим эмиттером.

Таблица 2. Связи между h параметрами

Дифференциальные параметры биполярных транзисторов зависят от режимов их работы. Для схемы с общим эмиттером наибольшее влияние испытывает коэффициент усиления эмиттерного тока h21э в зависимости от тока эмиттера. На рисунке 5.25 приведена эта зависимость для транзисторов КТ215 различных типономиналов. В области малых токов (микромощный режим) коэффициент усиления уменьшается вследствие влияния рекомбинационной компоненты в эмиттерном переходе, а в области больших токов (режим высокого уровня инжекции) - коэффициент усиления уменьшается вследствие уменьшения коэффициента диффузии.

Рис. 6. Зависимость коэффициента h21э для различных транзисторов.

Вывод

Четырёхполюсник - электрическая цепь (её участок) с четырьмя полюсами (зажимами), к которым могут подключаться другие цепи (участки цепи); наиболее распространённый тип многополюсника. В четырехполюснике обычно различают две пары зажимов: входные и выходные (предназначенные для подсоединения, соответственно, источника электрической энергии и нагрузки). Если зависимость между токами через Ч. и напряжениями на его зажимах линейная, то четырехполюсник называются линейным (в противном случае — нелинейным). Основная характеристика линейного четырехполюсника — комплексный коэффициент передачи, равный отношению комплексных амплитуд на его входе и выходе. Четырехполюсник называется симметричным, если при перемене мест подсоединений приёмника и источника его характеристики не меняются. Четырёхполюсником называется любая цепь, имеющая два входных и два выходных зажима. Примеры четырехполюсника: линия передачи, линия связи, трансформатор, выпрямитель, мостовые цепи, электрические цепи.

Список литературы

1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Каплянский А. Е. и др. Электрические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. -М.: Высш. шк., 1972. -448с.

3. Бобровников К. Н. «Электротехника» - 5-е изд., М. Электроник, 2005г.

4. Каскадров А. М, Нильщенко А. Д., Доценко Ю. А. – «Теория цепей и их анализ» - М. Высшая школа., 1997г.

5. Пирогов А. П., Миров М. А. – «Основы электротехники». – М. «Связь», 1998г.