Смекни!
smekni.com

Моделирование систем пособие по выполнению курсовой работы для студентов III (стр. 3 из 13)

y=f(x,v,h). (1.2)

Соотношения (1.1) и (1.2) могут быть заданы различными спо­собами: аналитически (с помощью формул), графически, таблично и т. д. Такие соотношения в ряде случаев могут быть получены через свойства системы S в конкретные моменты времени, на­зываемые состояниями.

Если рассматривать процесс функционирования системы S как последовательную смену состояний, то они могут быть интерпретированы как координаты точки в n-мерном фазовом пространстве, причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний называется пространством со­стояний объекта моделирования Z.

Состояния системы S в момент времени

полностью определяются начальными условиями
, входными воздействиями x(t), внутренними параметрами h(t) и воздействиями внешней сре­ды v(t), которые имели место за промежуток времени t* -
, с помощью двух векторных уравнений

Z(t)=Ф(z°,x,v,h,t) (1.3)

y(t)=F(z,t) (1.4)

Первое уравнение по начальному состоянию z° и экзогенным переменным x,v,h определяет вектор-функцию z(0), а второе по полученному значению состояний z (t) — эндогенные переменные на выходе системы у (t). Таким образом, цепочка уравнений объекта «вход — состояния — выход» позволяет определить характеристи­ки системы y(t)=F(z°, x,v,h,t)} (1.5)

В общем случае время в модели системы S может рассмат­риваться на интервале моделирования (0, Т) как непрерывное, так и дискретное.

Таким образом, под математической моделью объекта (реаль­ной системы) понимают конечное подмножество переменных {x(t), v(t), h(t)} вместе с математическими связями между ними и харак­теристиками у (t).

Если математическое описание объекта моделирования не содер­жит элементов случайности или они не учитываются, т. е. если можно считать, что в этом случае стохастические воздействия вне­шней среды v(t) и стохастические внутренние параметры h(t) отсут­ствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детерминированными входными воздействиями

y(t)=f(x,t) (1.6)

Очевидно, что детерминированная модель является частным случаем стохастической модели.

НЕПРЕРЫВНО-СТОХАСТИЧЕСКИЕ МОДЕЛИ

(Q-СХЕМЫ)

Особенности непрерывно-стохастического подхода рассмотрим на примере использования в качестве типовых математических схем систем массового обслуживания, которые будем называть Q-схемами. Системы массового обслуживания представляют собой класс математических схем, разработанных в теории массового обслуживания и различных приложениях для формализации процессов функционирования систем, которые по своей сути являются процессами обслуживания.

В качестве процесса обслуживания могут быть представлены различные по своей физической природе процес­сы функционирования экономических, производственных, техничес­ких и других систем, например потоки поставок продукции некото­рому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов и т. д. При этом характерным для работы таких объектов является случайное появление заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени, т. е. стохастический характер процесса их функционирова­ния.

В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и со­бственно обслуживание заявки.

Прибор обслуживания заявок

Это можно изобразить в виде неко­торого i-гo прибора обслуживания

(рисунок), состоящего из накопителя заявок
, в котором может одновременно находиться
заявок, где
— емкость i-гo накопителя и канала об­служивания заявок (или просто канала)
. На каждый элемент прибора обслуживания
поступают потоки событий: в накопитель
— поток заявок
, на канал
— поток обслуживаний
.

Потоком событий называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных собы­тий. Поток событий называется однородным, если он характеризу­ется только моментами поступления этих событий (вызываю­щими моментами) и задается. Mомент наступления i-го собы­тия — неотрицательное вещественное число. Однородный поток событий также может быть задан в виде последовательности про­межутков времени между i-м и (п-1)-м событиями, которая однозначно связана с последовательно­стью поступления заявок.

При моделиро­вании различных систем применительно к элементарному каналу обслуживания

можно считать, что поток заявок
, т. е. интервалы времени между моментами появления заявок на входе
образует подмножество неуправля­емых переменных, а поток обслуживания U, т. е. интервалы времени между началом и окончанием обслуживания заявки, об­разует подмножество управляемых переменных.

Заявки, обслуженные каналом

и заявки, покинувшие прибор
по различным причинам не обслуженными (например, из-за переполнения накопителя
, образуют выходной поток
, т. е. интервалы времени между моментами выхода заявок образуют подмножество выходных переменных.

Процесс функционирования прибора обслуживания

можно представить как процесс изменения состояний его элементов во времени z(t). Переход в новое состояние означает изменение количества заявок, которые в нем находятся (в канале
и в накопителе
).

В практике моделирования систем, имеющих более сложные структурные связи и алгоритмы поведения, для формализации ис­пользуются не отдельные приборы обслуживания, а Q-схемы, об­разуемые композицией многих элементарных приборов обслужива­ния (сети массового обслуживания).

Для того, чтобы осуществить процесс моделирования полученной Q-схемы используют различные языки имитационного моделирования. Одним из таких языков является язык имитационного моделирования GPSS (см. приложение 1)

Моделирование Q-схем с фазовой структурой

Если приборы массового обслуживания и их параллельные композиции соединены последовате­льно, то имеет место многофазное обслуживание (многофазная Q-схема). Таким образом, для задания Q-схемы необходимо ис­пользовать оператор сопряжения R, отражающий взаимосвязь эле­ментов структуры (каналов и накопителей) между собой.

Связи между элементами Q-схемы изображают в виде стрелок (линий потока, отражающих направление движения заявок). Раз­личают разомкнутые и замкнутые Q-схемы. В разомкнутой Q-схеме выходной поток обслуженных заявок не может снова поступить на какой-либо элемент, т. е. обратная связь отсутствует, а в замкнутых Q-схемах имеются обратные связи, по которым заявки двигаются в направлении, обратном движению вход-выход.

Собственными (внутренними) параметрами Q-схемы будут яв­ляться количество фаз, количество каналов в каждой фазе, количество накопителей каждой фазы, ем­кость i-гo накопителя. Следует отметить, что в теории мас­сового обслуживания в зависимости от емкости накопителя приме­няют следующую терминологию для систем массового обслужива­ния: системы с потерями, т. е. имеется только канал обслуживания системы с ожиданием, (т. е. очередь заявок не ограничивается) и системы смешанного типа (с ограниченной емкостью накопителя). Всю совокупность собственных параметров Q-схемы обозначим как подмножество Н.