Смекни!
smekni.com

Моделирование систем пособие по выполнению курсовой работы для студентов III (стр. 5 из 13)

1. Наличие приоритетов при выборе заявок на обслуживание каналов. По отношению к каналу могут быть рассмотрены заявки с абсолютным и относительным приоритетами. Заявки с абсолют­ным приоритетом при выборе из очереди в накопитель вытесняют из канала заявки с более низким классом приоритета, которые при этом снова поступают в накопитель (в начало или конец очереди) или считаются потерянными, а заявки с относительным приорите­том дожидаются окончания обслуживания каналом предыдущей заявки. Эти особенности учитываются в моделирующих алгорит­мах приоритетных

Q-схем, при определении времени освобождения канала и выборе претендентов на его занятие. Если наличие аб­солютных приоритетов приводит к потере заявок, то необходимо организовать фиксацию потерянных заявок.

2. Ограничение по времени пребывания заявок в системе. В этом случае возможно ограничение как по времени ожидания заявок в накопителях, так и по времени обслуживания заявок каналами, а также ограничение по сумме этих времен, т. е. по времени пребы­вания заявок в обслуживающем приборе. Причем эти ограничения могут рассматриваться как применительно к каждой фазе, так и к Q-схеме в целом. При этом необходимо в качестве особых состояний Q-схемы рассматривать не только моменты поступления новых заявок и моменты окончания обслуживания заявок, но и моменты окончания допустимого времени пребывания (ожидания, об­служивания) заявок в Q-схеме.

3. Выход элементов системы из строя и их дальнейшее вос­становление. Такие события могут быть рассмотрены в Q-схеме, как потоки событий с абсолютными приоритетами, приводящими к потере заявок, находящихся в обслуживании в канале или ожида­ющих начала обслуживания в накопителе в момент выхода соответ­ствующего элемента из строя. В этом случае в моделирующем алгоритме Q-схемы должны быть предусмотрены датчики (генера­торы) отказов и восстановлений, а также должны присутствовать операторы для фиксации и обработки необходимой статистики.

Рассмотренные моделирующие алгоритмы и способы их моди­фикации могут быть использованы для моделирования широкого класса систем. Однако эти алгоритмы будут отличаться по сложно­сти реализации, затратам машинного времени и необходимого объема памяти ЭВМ.

Детерминированный и асинхронный циклический алгоритмы наиболее просты с точ­ки зрения логики их построения, так как при этом использует­ся перебор всех элементов Q-схемы на каждом шаге. Трудности возникают с машинной реализацией этих алгоритмов вследствие увеличения затрат машинного времени на моделирование, так как просматриваются все состояния элементов Q-схемы. Затраты машинного времени на моделирование существенно увеличиваются при построении детерминированных моделирующих алгоритмов Q-схем, элементы которых функционируют в различных масштабах времени, напри­мер когда длительности обслуживания заявок каналами многока­нальной Q-схемы значительно отличаются друг от друга.

Действия операторов блок-диаграммы моделирующего алгоритма

В стохастическом синхронном алгоритме рассматриваются про­шлые изменения состояний элементов Q-схемы, которые произош­ли с момента предыдущего просмотра состояний, что несколько усложняет логику этих алгоритмов.

Асинхронный спорадический алгоритм позволяет просматри­вать при моделировании только те элементы Q-схемы, изменения состояний которых могли иметь место на данном интервале систем­ного времени, что приводит к некоторому упрощению этих модели­рующих алгоритмов по сравнению с синхронными алгоритмами и существенному уменьшению затрат машинного времени по срав­нению с детерминированными и циклическими алгоритмами.

Затраты необходимой оперативной памяти ЭВМ на проведение имитации могут быть значительно уменьшены при построении блочных моделей, когда отдельные блоки (модули) Q-схемы ре­ализуются в виде процедур (подпрограмм).

Рассмотренные моделирующие алгоритмы позволяют практически отразить всевозможные варианты много­фазных и многоканальных Q-схем, а также провести исследование всего спектра их вероятностно-временных характеристик, различ­ных выходных характеристик, интересующих исследователя или разработчика системы S.

При моделировании систем, формализуе­мых в виде Q-схем, с использованием языка имитационного моде­лирования GPSS, отпадает необходимость выбора принципа построения моделирующего алгоритма, так как механизм системного времени и просмотра состояний уже заложен в систему имитации дискретных систем, т. е. в язык GPSS.

В качестве примера приведена программа на языке GPSS. Для трехфазной системы массового обслуживания, для блок-диаграммы, приведенной ранее..

SIMULATE Программа имитации многофазной Q-схемы

1 STORAGE 10

2 STORAGE 10
EXPON FUNCTION RN1.C24

0 0 .1 .104 .2 .222 .3 .355 .4 .509 .5 .69

6 .915 .7 .12 .75 1.38 .8 1.6 .84 .83 .88 2.12

.9 2.3 .92 2.52 .94 2.81 .95 2.99 .96 3.2 .97 3.5

.98 3.9 .99 4.6 .995 5.3 .998 6.2 .999 7.0 .9997 8.0

GENERATE 10.FN#EXPON

ЗАТЕ SNF 1.OTK

ENTER 1

TRANSFER BOTH.KAN11.KAN12

KAN 11 SEIZE 1

LEAVE 1

ADVANCE 20. FN#EXPON

GATE SNF 2

RELEASE 1

TRANSFER .NAK2

KAN12 SEIZE 2

LEAVE 1

ADVANCE 20.FN#EXPON

GATE SNF 2

RELEASE 2

NAK2 ENTER 2

TRANSFER BOTH.KAN21.KAN22

KAN21 SEIZE 3

LEAVE 2

ADVANCE 20. FN#EXPON

GATE NU 5

RELEASE 3

TRANSFER .KAN31

KAN22 SEIZE 4

LEAVE 2

ADVANCE 20. FN#EXPON

GATE NU 5

RELEASE 4

KAN31 SEIZE 5

ADVANCE 10.FN#EXPON

RELEASE 5

TRANSFER .END

OTK SAVEVALVE 1+.K1

END TERMINATE 1

Программа реализации многофазного моделирующего алгоритма на языке GPSS

При моделировании систем, формализуе­мых в виде Q-схем, с использованием языка имитационного моде­лирования GPSS, отпадает необходимость выбора принципа построения моделирующего алгоритма, так как механизм системного времени и просмотра состояний уже заложен в систему имитации дискретных систем, т. е. в язык GPSS.

ПЛАНИРОВАНИЕ МАШИННЫХ ЭКСПЕРИМЕНТОВ С МОДЕЛЯМИ

СИСТЕМ

Имитационное моделирование является по своей сути машинным экспери­ментом с моделью исследуемой или проектируемой системы. План имитацион­ного эксперимента на ЭВМ представляет собой метод получения с помощью эксперимента необходимой пользователю информации. Эффективность исполь­зования экспериментальных ресурсов существенным образом зависит от выбора плана эксперимента. Основная цель экспериментальных исследований с помо­щью имитационных моделей состоит в наиболее глубоком изучении поведения моделируемой системы. Для этого необходимо планировать и проектировать не только саму модель, но и процесс ее использования, т. е. проведение с ней экспериментов на ЭВМ.

МЕТОДЫ ТЕОРИИ ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТОВ

Машинный эксперимент с моделью системы S при ее исследова­нии и проектировании проводится с целью получения информации о характеристиках процесса функционирования рассматриваемого объекта. Эта информация может быть получена как для анализа характеристик, так и для их оптимизации при заданных ограничени­ях, т. е. для синтеза структуры, алгоритмов и параметров системы S. В зависимости от поставленных целей моделирования системы S на ЭВМ имеются различные подходы к организации имитацион­ного эксперимента с машинной моделью

. Основная задача планирования машинных экспериментов — получение необходимой информации об исследуемой системе S при ограничениях на ресур­сы (затраты машинного времени, памяти и т. п.). К числу частных задач, решаемых при планировании машинных экспериментов, от­носятся задачи уменьшения затрат машинного времени на модели­рование, увеличения точности и достоверности результатов модели­рования, проверки адекватности модели и т. д.

Машинный эксперимент. Эффективность машинных эксперимен­тов с моделями

существенно зависит от выбора плана экс­перимента, так как именно план определяет объем и порядок про­ведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы S. Поэтому основная задача планирования машинных экспериментов с моделью
формулируется следующим образом: необходимо получить ин­формацию об объекте моделирования, заданном в виде моделиру­ющего алгоритма (программы), при минимальных или ограничен­ных затратах машинных ресурсов на реализацию процесса модели­рования.

Таким образом, при машинном моделировании рационально планировать и проектировать не только саму модель

системы S, но и процесс ее использования, т. е. проведение с ней эксперимен­тов с использованием инструментальной ЭВМ.

Для планирования эксперимента наиболее важ­ное значение имеет следующее:

1) простота повторения условий эксперимента на ЭВМ с моделью

системы S;

2) возможность управления экспериментом с моделью

, включая его прерывание и возобновление;