3) легкость варьирования условий проведения эксперимента ( воздействии внешней среды Е);
4) наличие корреляции между последовательностью точек в процессе моделирования;
5) трудности, связанные с определением интервала моделирования.
Преимуществом машинных экспериментов является возможность полного воспроизведения условий эксперимента с моделью исследуемой системы S. Сравнивать две альтернативы возможно при одинаковых условиях, что достигается, например, выбором одной и той же последовательности случайных чисел для каждой из альтернатив. Существенным достоинством является простота прерывания и возобновления машинных экспериментов, что позволяет применять последовательные и эвристические приемы планирования, которые могут оказаться нереализуемыми в экспериментах с реальными объектами. При работе с машинной моделью
всегда возможно прерывание эксперимента на время, необходимое для анализа результатов и принятия решений об его дальнейшем ходе (например, о необходимости изменения значений параметров модели ).Недостатком машинных экспериментов является то, что часто возникают трудности, связанные с наличием корреляции в выходных последовательностях, т. е. результаты одних наблюдений зависят от результатов одного или нескольких предыдущих, и поэтому
в них содержится меньше информации, чем в независимых наблюдениях. Так как в большинстве существующих методов планирования экспериментов предполагается независимость наблюдений, то многие из этих методов нельзя непосредственно применять для машинных экспериментов при наличии корреляции.
Основные понятия планирования экспериментов. В связи с тем что математические методы планирования экспериментов основаны на кибернетическом представлении процесса проведения эксперимента, наиболее подходящей моделью последнего является абстрактная схема, называемая «черным ящиком». При таком кибернетическом подходе различают входные и выходные переменные:
. В зависимости от того, какую роль играет каждая переменная в проводимом эксперименте, она может являться либо фактором, либо реакцией. Пусть, например, имеют место только две переменные: х и у. Тогда если цель эксперимента — изучение влияния переменной х на переменную у, то х — фактор, а у — реакция. В экспериментах с машинными моделями системы S фактор является экзогенной или управляемой (входной) переменной, а реакция — эндогенной (выходной) переменной.Каждый фактор
, i=l,2,… k, может принимать в эксперименте одно из нескольких значений, называемых уровнями. Фиксированный набор уровней факторов определяет одно из возможных состояний рассматриваемой системы. Одновременно этот набор представляет собой условия проведения одного из возможных экспериментов.Каждому фиксированному набору уровней факторов соответствует определенная точка в многомерном пространстве, называемом факторным пространством. Эксперименты не могут быть реализованы во всех точках факторного пространства, а лишь в принадлежащих допустимой области, как, например, это показано для случая двух факторов
и на рисунке (плоскость ).Существует вполне определенная связь между уровнями факторов и реакцией (откликом) системы, которую можно представить в виде соотношения
Функцию
связывающую реакцию с факторами, называют функцией реакции, а геометрический образ, соответствующий функции реакции,— поверхностью реакции. Исследователю заранее не известен вид зависимостей , i=1,2,… т, поэтому используют приближенные соотношения:Зависимости
находятся по данным эксперимента. Последний необходимо поставить так, чтобы при минимальных затратах ресурсов (например, минимальном числе испытаний), варьируя по специально сформулированным правилам значения входных переменных, построить математическую модель системы и оценить ее характеристики.При планировании экспериментов необходимо определить основные свойства факторов. Факторы при проведении экспериментов могут быть управляемыми и неуправляемыми, наблюдаемыми и ненаблюдаемыми, изучаемыми и не изучаемыми, количественными и качественными, фиксированными и случайными.
Фактор называется управляемым, если его уровни целенаправленно выбираются исследователем в процессе эксперимента. При машинной реализации модели
исследователь принимает решения, управляя изменением в допустимых пределах различных факторов.Фактор называется наблюдаемым, если его значения наблюдаются и регистрируются. Обычно в машинном эксперименте с моделью
наблюдаемые факторы совпадают с управляемыми, так как нерационально управлять фактором, не наблюдая его. Но неуправляемый фактор также можно наблюдать. Например, на этапе проектирования конкретной системы S нельзя управлять заданными воздействиями внешней среды Е, но можно наблюдать их в машинном эксперименте. Наблюдаемые неуправляемые факторы получили название сопутствующих. Обычно при машинном эксперименте с моделью число сопутствующих факторов велико, поэтому рационально учитывать влияние лишь тех из них, которые наиболее существенно воздействуют на интересующую исследователя реакцию.Фактор относится к изучаемым, если он включен в модель
для изучения свойств системы S, а не для вспомогательных целей, например для увеличения точности эксперимента.Фактор будет количественным, если его значения — числовые величины, влияющие на реакцию, а в противном случае фактор называется качественным. Например, в модели системы, формализуемой в виде схемы массового обслуживания (Q-схемы), количественными факторами являются интенсивности входящих потоков заявок, интенсивности потоков обслуживания, емкости накопителей, количество обслуживающих каналов и т. д., а качественными факторами — дисциплины постановки в очередь, выбора из очереди, обслуживания заявок каналами и т. д. Качественным факторам в отличие от количественных не соответствует числовая шкала. Однако и для них можно построить условную порядковую шкалу, с помощью которой производится кодирование, устанавливая соответствие между условиями качественного фактора и числами натурального ряда.
Фактор называется фиксированным, если в эксперименте исследуются все интересующие экспериментатора значения фактора, а если экспериментатор исследует только некоторую случайную выборку из совокупности интересующих значений факторов, то фактор называется случайным. На основании случайных факторов могут быть сделаны вероятностные выводы и о тех значениях факторов, которые в эксперименте не исследовались.
В машинных экспериментах с моделями
не бывает неуправляемых или ненаблюдаемых факторов применительно к исследуемой системе S. В качестве воздействий внешней среды Е, т. е. неуправляемых и ненаблюдаемых факторов, в машинной имитационной модели выступают стохастические экзогенные переменные. Если имитационная модель сформулирована, то все факторы определены и нельзя во время проведения данного эксперимента (испытания) с моделью вводить дополнительные факторы.Каждый фактор может принимать в испытании одно или несколько значений, называемых уровнями, причем фактор будет управляемым, если его уровни целенаправленно выбираются экспериментатором. Для полного определения фактора необходимо указать последовательность операций, с помощью которых устанавливаются его конкретные уровни. Такое определение фактора называется операциональным и обеспечивает однозначность понимания фактора.
Основными требованиями, предъявляемыми к факторам, являются требование управляемости фактора и требование непосредственного воздействия на объект. Под управляемостью фактора понимается возможность установки и поддержания выбранного нужного уровня фактора постоянным в течение всего испытания или изменяющимся в соответствии с заданной программой. Требование непосредственного воздействия на объект имеет большое значение в связи с тем, что трудно управлять фактором, если он является функцией других факторов.