Смекни!
smekni.com

Методические рекомендации к курсовому проекту по процессам и аппаратам химических и пищевых технологий для студентов специальностей 240706, 260601, 240701, 240702, 260204, 240901 дневной, вечерней и з (стр. 6 из 11)

Таким образом, знание равновесных концентраций распределяемого вещества позволяет определить направление процесса – из какой фазы в какую будет переходить вещество, и в определенной степени – скорость процесса. Как и в других процессах, движущая сила массообмена характеризует степень отклонения системы от состояния динамического равновесия. В пределах данной фазы вещество переносится от точки с большей концентрацией к точке с меньшей концентрацией. Поэтому в инженерных расчетах движущую силу выражают через разность концентраций.

Определить направление переноса и движущую силу процесса можно посредством равновесных зависимостей, которые могут быть представлены в виде графиков (диаграммы равновесия), таблиц, уравнений /82 – 87/.

К процессам, для которых характерна свободная граница раздела фаз, относятся такие широко распространенные в технике процессы, как абсорбция, десорбция, перегонка и ректификация, жидкостная экстракция. В подобных процессах граница контакта фаз подвижна и определяется гидродинамической обстановкой.

Массообменные процессы со свободной границей раздела фаз по принципу участия фаз подразделяются на две группы:

а) процессы, в которых участвуют как минимум три вещества, т.е. распределяемое вещество переносится (извлекается) из одного носителя в другой носитель (абсорбция, десорбция, экстракция);

б) процессы, в которых вещества, составляющие фазы, участвуют в массообменных процессах и не могут рассматриваться как носители распределяемого вещества (перегонка, ректификация).

Поскольку на практике концентрация участвующих в процессе фаз может иметь разную размерность, то при проведении технологического расчета этому необходимо уделять особое внимание. Формулы для пересчета концентраций представлены
в учебном пособии /6/.

В большинстве случаев подобные процессы осуществляются
в колонных аппаратах. Поэтому при проведении технологических расчетов массообменных аппаратов определяют их диаметр и высоту. Диаметр или сечение аппарата отражает его производительность, а высота – интенсивность протекающих в аппарате процессов. Обычно диаметр определяют из уравнения расхода, однако в этом случае возникает проблема с выбором скорости, которая оказывает свое влияние не только на диаметр, но и на высоту аппарата, на его гидравлическое сопротивление и величину брызгоуноса.

Для расчета высоты аппарата существует несколько методов, однако при этом следует различать два основных вида аппаратов (по принципу изменения в них концентрации в фазах) – аппараты с непрерывным контактом фаз и аппараты со ступенчатым контактом фаз. В обоих случаях расчет высоты основывается на общих кинетических закономерностях массобменных процессов и может выражаться различными способами: уравнением массопередачи, высотой единиц переноса и др.

К массообменным процессам с участием жидкой (газовой или паровой) и твердой фаз относят адсорбцию, ионный обмен, сушку, растворение, экстракцию из твердого тела, кристаллизацию. Особенностями этих процессов являются:

- нестационарность процесса;

- многообразие элементарных механизмов массопередачи в твердом теле.

В подобных системах основными стадиями процесса являются:

– перенос во внешней фазе (жидкости, газе или паре), который осуществляется конвективной и молекулярной диффузией;

– внутренний перенос (в твердой фазе), который осуществляется посредством диффузии в твердом теле, конвективного переноса, свободной и кнудсеновской диффузии, поверхностной диффузии и термодиффузии.

Как уже говорилось выше, расчет массообменных аппаратов сводится к определению поверхности контакта фаз и геометрических размеров аппарата. Порядок расчета типовых процессов приведен ниже.

7.3.1 Порядок расчета абсорбционной установки

7.3.1.1 Переводится концентрация из весовых долей в мольные.

7.3.1.2 Определяется количество поглощаемого целевого компонента и поглотителя.

7.3.1.3 Определяются оптимальная и рабочая скорости газа.

7.3.1.4 Рассчитывается диаметр абсорбера.

7.3.1.5 Определяется уравнение рабочей и равновесной линий, средняя движущая сила. В расчете средней движущей силы при прямолинейной зависимости для линии равновесия можно воспользоваться среднелогарифмической зависимостью.

7.3.1.6 Определяется коэффициент массопередачи.

7.3.1.7 Определяются поверхность и объем насадки.

7.3.1.8 Находится сопротивление абсорбера и подбирается газодувка.

7.3.1.9 Определяется количество подаваемой воды, подбираются распределительные устройства.

7.3.1.10 Производится расчет и выбор вспомогательного оборудования (теплообменников, расходных емкостей, конденсатоотводчиков, трубопроводов, насосов и др. в зависимости от технологических особенностей процесса).

Графическая часть включает: 1) технологическую схему абсорбционной установки с сопутствующим вспомогательным оборудованием; 2) чертеж основного аппарата (продольный и поперечный разрезы абсорбера, распределительного устройства для подачи воды в скруббер).

7.3.2 Порядок расчета ректификационной установки

7.3.2.1 Составляется материальный баланс, определяется выход продуктов.

7.3.2.2 Пересчитываются заданные весовые концентрации в мольные доли.

7.3.2.3 Строится равновесная кривая с пересчетом в мольные доли. При этом следует пользоваться литературными данными.

7.3.2.4 Определяется минимальное флегмовое число и строится график для выбора оптимального флегмового числа.

7.3.2.5 Определяется теоретическое число тарелок и находится КПД колонны.

7.3.2.6 Определяется диаметр колонны.

7.3.2.7 Вычисляется средняя весовая скорость в колонне, определяется расстояние между тарелками и общая высота колонны.

7.3.2.8 Определяются размеры колпачков и сливных патрубков отдельно для укрепляющей и исчерпывающей колонн.

7.3.2.9 Составляется тепловой баланс колонны.

7.3.2.10 Производится расчет и подбор вспомогательного оборудования (дефлегматора, испарителя, подогревателя, кондесатоотводчиков, расходных емкостей, трубопроводов, насосов и др. в зависимости от технологических особенностей процесса).

Графическая часть включает: 1) технологическую схему ректификационной установки с сопутствующим вспомогательным оборудованием; 2) чертеж основного аппарата (разрез царги колонны, узел крепления тарелки, тарелку в плане, колпачок).

7.3.3 Сушильные установки

7.3.3.1 Составляется материальный баланс сушилки и определяется производительность по исходному материалу и испаряемой влаге.

7.3.3.2 Составляется тепловой баланс сушилки, из которого определяется расход сушильного агента. Для барабанной сушилки предварительно принимаются потери в окружающую среду (80…160)·103 Дж/кг испаряемой влаги.

7.3.3.3 Определяются размеры сушилки:

а) для сушилки в кипящем слое критическая скорость находится по графику Ly = f(Ar). Рабочая скорость газа определяется для порозности e = 0,6…0,75. Физические константы газа принимаются по его температуре на выходе. При определении высоты аппарата высота сепарационного пространства принимается в четыре раза больше высоты кипящего слоя;

б) для барабанной сушилки рассчитывается объемный расход газов на выходе из сушилки и выбирается допустимая скорость газов
в соответствии с рекомендациями стандарта. Значение диаметра уточняется по стандарту. Объем сушильного барабана рассчитывается на основе уравнения теплопередачи, исходя из количества подводимого тепла и коэффициента теплоотдачи от сушильного агента к материалу. Коэффициент теплоотдачи рассчитывается по методике, изложенной
в стандарте. По вычисленному объему рассчитывается длина барабана, которая уточняется по ГОСТ;

в) для распылительной сушилки предварительно принимается скорость газа в сушильной камере от 0,2 до 0,5 м/с и определяется площадь сушильной камеры. По нормалям выбирается распылитель центробежный дисковый, определяется для него диаметр и частота

вращения (окружная скорость вращения принимается от 120 до
140 м/с). Вычисляется средний объемно-поверхностный диаметр частиц и диаметр факела распыла. Объем камеры определяется по уравнению теплопередачи, при этом вычисляется средняя разность температур и объемный коэффициент теплоотдачи. Средняя скорость газа вычисляется по расходу газа и принятому диаметру сушильной камеры; скорость витания определяется по формуле Стокса ввиду малого размера частиц. Исходя из полученного объема камеры, пользуясь тем, что для дисковых распылителей НКК = 0,8…1,0, определяют диаметр камеры, который проверяется по диаметру факела распыла.

7.3.3.4 Производятся энергетические расчеты:

а) для сушилки в кипящем слое рассчитывают гидравлическое сопротивление слоя, принимая сопротивление решетки равным сопротивлению слоя; определяют необходимый напор вентилятора и мощность на продувку сушильного агента; рассчитывают общие энергозатраты с учетом нагревания сушильного агента;

б) для барабанной сушилки рассчитывается мощность, необходимая для вращения барабана, с учетом общего веса и трения и производится подбор привода;

в) для распылительной сушилки определяется расход энергии на распыление.

7.3.3.5 Коэффициент теплоотдачи от сушильного агента к материалу для сушилки в кипящем слое рассчитывается с учетом критерия Архимеда.

7.3.3.6 Проводится расчет и подбор вспомогательного оборудования (калориферов-теплообменников, пылеулавливающих устройств, вентиляторов, расходных емкостей, дозаторов, транспортных устройств, трубопроводов, массопроводов, насосов и др.) в зависимости от технологических особенностей процесса.

Графическая часть включает: 1) технологическую схему сушильной установки с сопутствующим вспомогательным оборудованием;
2) чертеж основного аппарата (в двух проекциях).

8 ЗАДАНИЯ НА КУРСОВОЙ ПРОЕКТ