- Механические дозаторы 20, 100, 200 и 1000 мм3;
- На дверях лаборатории, оборудовании, контейнерах и материалах устанавливается знак биологической опасности. Им также помечаются наноматериалы.
- Вход в лабораторию разрешается только тем лицам, чье присутствие предусмотрено программой исследований и утверждено руководителем лаборатории.
- Автоклав следует устанавливать в лаборатории.
- Поверхности стен, столов и потолков должны легко очищаться и деконтаминироваться.
- Режим и условия работы приборов, создающих опасность образования аэрозоля (вибромешалки, водоструйные насосы, лиофилизаторы, дозаторы и т.п.), организуются таким образом, чтобы свести к минимуму поступление частиц аэрозоля в воздух помещения.
- Должны использоваться боксы с ламинарным потоком воздуха или боксы с вытяжной вентиляцией во всех случаях, когда возможно образование аэрозоля с НЧ. Не допускается рециркуляция воздуха. Применяется правило "Работа вдвоем". Состояние воздуховодов и фильтров ежегодно проверяется работниками специальной ведомственной службы, что оформляется техническим актом.
- Использованные в опыте материалы, содержащие наночастицы корового белка, обеззараживаются.
- Непосредственно после завершения экспериментов рабочие поверхности боксов и другого оборудования обеззараживаются.
- Стеклянная посуда, которая употреблялась при анализах, перед повторным использованием должна стерилизоваться непосредственно в лаборатории или помещаться в прочные герметичные контейнеры до удаления из лаборатории; эти контейнеры и их содержимое следует стерилизовать при повторном применении.
- Вакуумные линии необходимо защищать фильтрами и ловушками для жидкости, которые периодически подвергаются техническому осмотру персоналом. Периодичность осмотра определяется руководителем исследований.
- Допускается проведение экспериментов, требующих физической защиты уровня Ф3, в лабораториях, где создан направленный поток воздуха, но устройство вытяжной вентиляции не соответствует полностью уровню Ф3.
- При работе с лиофилизованными материалами должны использоваться одноразовые перчатки из 100% нитрила с хорошей целостностью. Перчатки с удлиненным рукавом являются полезными для предотвращения загрязнения лаборатории, халата или костюма. Перчатки необходимо менять после использования наноматериалов или, если подозревается загрязнение. Хранить загрязненные перчатки необходимо в пластиковых пакетах или герметичных контейнерах в накопителе отходов вплоть до их утилизации. Следует тщательно мыть руки и предплечья после работы с наноматериалами. Обязательно использование одноразовых лабораторных халатов и хранение их в специально отведенных шкафах.
- Для защиты органов дыхания необходимо использовать респираторы противоаэрозольные с дополнительной защитой:
Респиратор BLS – 215 ГОСТ 12.4.041-89. 2-ая степень защиты
Респиратор BLS – 225. ГОСТ 12.4.041-89. 2-ая степень защиты
Респиратор BLS – 520A ГОСТ 12.4.041-89 3-я степень защиты
- Исключается пипетирование ртом. При работе необходимо использовать одноразовые наконечники для автоматических пипеток с аэрозольным барьером, при этом обязательно менять наконечники при переходе от одной пробы к другой.
- Использованные наконечники хранить в одноразовых герметичных контейнерах в накопителе отходов вплоть до их утилизации или сбрасывать в специальную емкость с 1Н раствором соляной кислоты.
Лаборатория должна иметь комплект для ликвидации случайной утечки, рассыпания и пролива наночастиц: огораживающие ленты, нитриловые перчатки, одноразовые респираторы, адсорбирующие материалы, салфетки, пластиковые мешки. Небольшие количества наноматериалов могут быть уничтожены с помощью мокрой очистки поверхностей салфетками из абсорбирующего материала. Рассыпанные лиофилизованные суспензии могут быть удалены с помощью пылесоса, специально оснащенного фильтром HEPA (High Efficiency Particle Absorbption) класса H 13 (эффективность задержания частиц размером около 0,06 микрон - 99,95%). Для обеспечения эффективной задержки наночастиц фильтр устанавливается на выпускном клапане в целях предотвращения рассеивания в воздухе лаборатории.
Требования к анализируемым материалам:
- агрегатное состояние – жидкость. Для определения биогенных наноматериалов в воздушной среде, почве, тканях растений или животных объект необходимо перевести в жидкое состояние любым общепринятым методом, избегая при этом экстремальных значений температуры, рН и использования реагентов, способных вызвать денатурацию детектируемого вещества.
- минимальное содержание наноматериала на основе корового белка гепатита В в пробе - 2 нг/ см3.
- находящиеся в анализируемом растворе вещества не должны влиять на взаимодействие антитела с антигеном. Анализ всех образцов должен сопровождаться постановкой положительных и отрицательных контролей.
10.4.1. Иммуноферментный анализ (ИФА)
Метод иммуноферментного анализа (ИФА) основан на высокой избирательности и специфичности иммунологических реакций “антиген-антитело”. Данный метод позволяет определить присутствие корового антигена гепатита В в исследуемом растворе и определить его концентрацию.
10.4.1. 1. Расчет и интерпретация результата
В качестве стандартов используются образцы корового антигена гепатита В с известной концентрацией в интервале от 1 до 50 нг/ см3. По полученным значениям строится калибровочная кривая. Калибровочная кривая определяет зависимость измеренного поглощения от количества белка в ячейке. Содержание корового антигена гепатита В в образцах вычисляется по полученной калибровочной кривой.
10.4.1. 2.Метрологическая характеристика метода
- Минимальное открываемое количество - 0,1 нг.
- Диапазон линейности стандартного графика - 2-100 нг/ см3.
- Приемлемый коэффициент вариации для анализа образца
а) по одному стандартному графику - не более 10%;
б) по разным стандартным графикам в разных сериях опытов - не более 12%.
- Воспроизводимость (сходимость результатов) - 9%
- Тест на открытие (проверка линейности анализа методом добавок) - 91%-108%
10.4.2. Денатурирующий белковый электрофорез в полиакриламидном геле
Данный метод дает возможность определения молекулярной массы исследуемых белков по их подвижности в денатурирующем полиакриламидном геле.
10.4.2.1. Расчет и интерпретация результата
Для определения молекулярной массы рекомбинантного корового антигена гепатита В в одну из ячеек ПААГ-геля наносится маркер, имеющий известные молекулярные массы. После проведения опыта положение полосы, соответствующей целевому продукту, сравнивается с положением полос маркера. Молекулярная масса исследуемого образца должна находиться в интервале полос маркера, соответствующим 15 – 20 кДа. Отсутствие на геле других видимых полос свидетельствует о гомогенности и чистоте препарата.
(справочное)
Для выявления и идентификации наночастиц методом электронной микроскопии могут использоваться электронные микроскопы фирм Цейс (Zeiss, Германия) и Джеол (Jeol, Япония) из списка, приведенного ниже (по состоянию на начало 2010 г), а также электронные микроскопы других производителей с характеристиками, соответствующими требованиям п.6.1.1.
Электронные микроскопы фирм Цейс (Zeiss, Германия)
1. Просвечивающий электронный микроскоп, модель LEO 912AB. Ускоряющее напряжение 120 кВ, режим просвечивающей электронной микроскопии с разрешением 0,34 нм (по паспорту) и диапазоном увеличений до 80 до 500000, режим дифракции электронов, режим измерения спектров ХПЭЭ с разрешением 1,5 эВ, режим элементного картирования на основе СХПЭЭ, цифровая система регистрации изображений на основе ПЗС.
2. Просвечивающий электронный микроскоп, модели Libra 120 и Libra 120 Plus. Ускоряющее напряжение 120 кВ, режим просвечивающей электронной микроскопии с разрешением 0,34 нм (по паспорту) и диапазоном увеличений до 8 до 630 000, режим дифракции электронов, режим измерения спектров ХПЭЭ с разрешением 1,5 эВ, режим элементного картирования на основе СХПЭЭ, цифровая система регистрации изображений на основе ПЗС.
3. Просвечивающий электронный микроскоп, модели Libra 200 FE HR и Libra 200 FE HT. Ускоряющее напряжение 200 кВ, режим просвечивающей электронной микроскопии с разрешением 0,24 нм (по паспорту Libra 200 FE HR), 0,29 нм (по паспорту Libra 200 FE HТ) и диапазоном увеличений до 8 до 1 000 000, режим дифракции электронов, режим измерения спектров ХПЭЭ с разрешением 0,7 эВ, режим элементного картирования на основе СХПЭЭ, цифровая система регистрации изображений на основе ПЗС.
4. Просвечивающий электронный микроскоп, модели Libra 200 МС HR и Libra 200 МС HT. Ускоряющее напряжение 200 кВ, режим просвечивающей электронной микроскопии с разрешением 0,24 нм (по паспорту Libra 200 МС HR), 0,29 нм (по паспорту Libra 200 МС HТ) и диапазоном увеличений до 8 до 1 000 000, режим дифракции электронов, режим измерения спектров ХПЭЭ с разрешением 0,2 эВ, режим элементного картирования на основе СХПЭЭ, цифровая система регистрации изображений на основе ПЗС.
Электронные микроскопы фирмы ДЖЕОЛ (JEOL, Япония):
1. Просвечивающий электронный микроскоп, модель JEM-1230. Ускоряющее напряжение 120 кВ, режим просвечивающей электронной микроскопии с разрешением 0,38 нм (по паспорту) и диапазоном увеличений от 50 до 800 000, режим дифракции электронов, режим измерения спектров ХПЭЭ с разрешением 1,5 эВ, режим элементного картирования на основе СХПЭЭ, цифровая система регистрации изображений на основе ПЗС-камеры.
2. Просвечивающий электронный микроскоп, модель JEM-1400. Ускоряющее напряжение 120 кВ, режим просвечивающей электронной микроскопии с разрешением 0,38 нм (по паспорту) и диапазоном увеличений от 50 до 1200000, режим дифракции электронов, режим измерения спектров ХПЭЭ с разрешением 1,5 эВ, режим элементного картирования на основе СХПЭЭ, цифровая система регистрации изображений на основе ПЗС-камеры.