3. почвы сельскохозяйственных угодий.
4.4. Гидробионты
Поверхностные свойства наноматериалов определяют стабильность и подвижность коллоидных систем, образуемых наночастицами, а также их агрегацию и отложение в водных системах. Стабильность коллоидных суспензий наночастиц обуславливает высокую вероятность накопления наночастиц в водорослях с последующей передачей наночастиц по пищевой цепи гидробионтов. После попадания наноматериалов в водную систему посредством сточных вод или промышленных выбросов происходит их аккумуляция в растительных организмах (например, водорослях), а также организмах беспозвоночных животных (планктоне, бентосе, ракообразных), являющихся первичными звеньями пищевой цепи, и далее переход в организмы водных позвоночных, участвующих в пищевой цепи человека.
Поскольку ключевым фактором, определяющим поведение наночастиц в водных средах, являются их поверхностные свойства, при контроле содержания наночастиц в организме гидробионтов необходимо учитывать такие параметры, как химический состав наночастиц, их размер, концентрацию, агрегационную способность и поверхностный заряд.
Перечень гидробионтов, в которых проводится контроль на содержание наночастиц:
1. зоопланктон;
2. фитопланктон (например, низшие водоросли);
3. водные беспозвоночные (например, ракообразные, моллюски);
4. водные позвоночные (рыбы).
4.5. Водоросли, грибы
Наноматериалы, поступающие в почву, грунтовые воды и воды открытых водоемов в результате антропогенной деятельности, могут проникать в ткани несовершенных грибов и водорослей. Известно, что клеточные стенки грибов обладают свойством полупроницаемости. Наночастицы проникают через клеточные стенки и достигают плазматической мембраны. Следующий за этим эндоцитоз, а также проникновение наночастиц через ионные каналы или с помощью транспортных белков обуславливают попадание наночастиц в клеточные органеллы. Находящиеся внутри клеток наночастицы способны оказывать влияние на метаболические процессы грибов и водорослей. Поскольку степень токсического воздействия (угнетение фотосинтетических процессов и газообмена, образование свободных радикалов) наночастиц на эти организмы определяется в основном химическим составом и поверхностной реакционной способностью наноматериалов, при контроле их содержания в этих объектах окружающей среды необходимо учитывать прежде всего эти параметры.
Некоторые наночастицы, обладающие антимикробным и противогрибковым действием, могут оказывать влияние на жизнедеятельность свободноживущих азотфиксирующих бактерий и, таким образом, нарушать равновесие в симбиотических взаимодействиях между грибами, бактериями и растениями. Это может привести к существенным нарушениям в экосистеме. Кроме того, попадание наночастиц в такие объекты окружающей среды, как грибы, может отрицательно сказаться на функциях этих организмов при защите растений-хозяев от фитопатогенов и факторов оксидативного стресса. Трофический переход наночастиц обуславливает высокую вероятность их попадания в ткани почвенных животных, основным источником питания которых являются грибы и бактерии. Таким образом, попадание наноматериалов в любой компонент биоценоза может привести к внедрению наночастиц в другие объекты данной системы. При этом контаминация наночастицами водорослей и грибов является информативным индикатором, позволяющим принимать оперативные меры по предотвращению последствий загрязнения.
Перечень объектов, в которых проводится контроль на содержание наночастиц:
1. ткани несовершенных грибов (мицелий);
2. ткани водорослей (у крупных макрофитов – слоевище).
3. ткани миксомицетов (плазмодий, плодовые тела)
4. лишайники (слоевище).
4.6. Ткани наземных растений.
Попадание наноматериалов в ткани наземных растений с последующим накоплением и встраиванием наночастиц в пищевые цепи может происходить несколькими путями. Перенос загрязняющих почву и грунтовые воды наночастиц осуществляется с помощью корневой системы растения посредством эндоцитоза; наземная часть растительных организмов подвергается экспозиции наночастицами, содержащихся в атмосферном воздухе. При этом растения с большим индексом площади поверхности листьев аккумулируют большие количества наночастиц, увеличивая приток наноматериалов в пищевые цепи. Преднамеренное использование нанопрепаратов в растениеводстве (при послеуборочной обработке различных сельскохозяйственных культур, хранении овощей и фруктов в регулируемых газовых средах, предпосевной обработке и протравливании семян, в качестве пестицидов, наноудобрений, стимуляторов роста растений, в составе гидропонических растворов и других целях) также обуславливает аккумуляцию наночастиц в тканях растений.
Перечень тканей наземных растений, в которых проводится контроль на содержание искусственных наночастиц:
1. листья;
2. корни;
3. плоды.
4.7. Ткани наземных животных.
Попадание искусственных наночастиц в ткани наземных животных обусловлено двумя факторами – распространением наночастиц в почвах, грунтовые водах и тканях наземных растений, а также направленным использованием препаратов, содержащих наночастицы, в агропромышленном комплексе – в целях обеззараживания воздуха и различных материалов животноводческих помещений, при стимуляции роста кормовых растений, в ветеринарии, для улучшения качества кормов. Наночастицы металлов включают в состав премиксов для повышения жизнестойкости животных и их продуктивности. Материалы с наночастицами серебра, обладающие антибактериальными свойствами, в виде красок, бесхлорных средств дезинфекции, перевязочных материалов, лака для покрытия катетеров применяются в ветеринарии для борьбы со стафилококковыми и другими инфекциями. Наносеребро может использоваться в доильных аппаратах, в фильтрах систем кондиционирования животноводческих помещений.
Поскольку реакционная способность и биологическая активность наночастиц зависит от их состава, размеров, концентрации, заряда, площади поверхности, необходимо учитывать эти параметры при контроле содержания наночастиц в животных организмах.
Перечень органов и тканей наземных животных, в которых контролируется содержание наночастиц:
1. органы пищеварительной системы (кишечник, печень);
2. органы дыхательной системы (легкие);
3. органы мочевыделительной системы (почки);
4. органы и ткани кровеносной системы (сердце, кровь);
5. органы нервной системы (мозг);
6. покровные ткани (кожа);
7. экскреты (моча, молоко).
V. ПЕРЕЧЕНЬ И ПОРЯДОК ИДЕНТИФИКАЦИИ ПРИОРИТЕТНЫХ НАНОМАТЕРИАЛОВ, ПОДЛЕЖАЩИХ КОНТРОЛЮ НА ПРЕДПРИЯТИЯХ НАНОИНДУСТРИИ
5.1. Фуллерены и углеродные нанотрубки
В составе продукции наноиндустрии, подлежащей контролю на предприятиях, могут присутствовать фуллерены различного состава и углеродные нанотрубки. Идентификация фуллеренов осуществляется по их подвижности (времени удержания) при ВЭЖХ на колонке с обращённой фазой, изократически элюируемой смесью полярного и неполярного органического растворителя. Поскольку условия извлечения (экстракции) из продукции и последующего хроматографического разделения фуллеренов и их производных различны, заявитель должен предоставить информацию о структуре фуллеренов (число атомов углерода в ядре, число и структура боковых цепей) в составе продукции. Идентификация фуллерена в образце продукции проводится с использованием методики экстракции и стандарта, предоставленных заявителем. При отсутствии данной информации в составе продукции производится выявление, идентификация и количественное определение низших немодифицированных фуллеренов (пристинов С60 и С70). Экстракция из продукции проводится с помощью бромбензола, а анализ на колонке С18. Идентификация пика фуллерена на хроматограмме и определение максимума поглощения в УФ области выполняется с помощью стандарта С60 или С70 фуллерена, полученного из «банка стандартных образцов наноматериалов».
При выявлении и идентификации углеродных нанотрубок используется метод ПЭМ с контрастированием солями тяжёлых металлов. В качестве дополнительных методов идентификации могут применяться методы инфракрасной фотолюминесцентной спектроскопии и ИК- спектроскопии поглощения.
Идентификация вида наноматериала (одно-, многостенные углеродные нанотрубки) выполняется на основании сравнения с результатами исследования для стандарта, входящего в состав «банка стандартных образцов наноматериалов»
5.2. Частицы металлов
Выявление наночастиц металлов основано на свойстве их высокой электронной плотности. Выявление и идентификацию наночастиц металлов рекомендуется проводить методами ПЭМ в образцах, приготовленных без использования контрастирующих агентов (солей тяжелых металлов).
К приоритетным наноматериалам данной категории относятся наночастицы золота и серебра, для которых возможно привести общий порядок идентификации. Наночастицы в препарате могут представлять гетерогенную смесь по размерам, с низким показателем полиморфизма, поэтому их идентификация по размерным параметрам в образце затруднена. Наночастицы серебра и золота имеют низкий показатель полиморфизма, характерна, как правило, эллиптическая форма частиц с широким диапазоном коэффициента формы частиц. Среди смеси компонентов наночастицы можно отличить по электронной плотности и правильной не угловатой поверхности. Агрегированное состояние наночастиц в материале встречается, однако сохраняется признак отдельных частиц – правильная поверхность без углов. Существует вероятность ошибки: как ложноположительной (когда частицы матрикса принимаются за наночастицы, так и ложноотрицательной, когда наночастицы выбраковываются из-за схожести с компонентами матрикса). Обязательным является получение электронограммы в режиме дифракции и сравнение с электронограммой референс-образца анализируемых наночастиц.