Полноценное изучение физики предполагает овладение модельным подходом к анализу явлений, процессов и систем; освоение экспериментальных методов исследования природы; приобретение навыков решения не только идеализированных, но и реальных физических задач.
В требованиях к уровню подготовки выпускников основной школы включено 100 предметных тем. Для учителя даны четкие ориентиры по разделению учебного материала на обязательный для усвоения всеми учащимися, и материал, предлагаемый для изучения, но не подлежащий обязательному контролю с последующей оценкой (в образовательных стандартах такой материал выделен курсивом). Процесс обучения физике ориентирован на развитие познавательных интересов, интеллектуальных и творческих способностей учащихся, формирование умений самостоятельного приобретения новых знаний в соответствии с жизненными потребностями и интересами. Этому способствует выполнение практической составляющей курса физики (демонстрации, лабораторные работы и опыты, физический практикум). Почти на каждом уроке изучение материала должно сопровождаться демонстрацией нового, неизвестного природного явления, физического эффекта. В соответствии с примерной программой по физике за три года обучения в основной школе учащиеся должны ознакомиться с более 100 демонстрациями и выполнить 64 лабораторных работы и опыта. За два года обучения в средней школе на базовом уровне учащиеся должны познакомиться с 47 демонстрациями и выполнить 16 лабораторных работ, на профильном уровне ‑ с 96 демонстрациями и выполнить 26 лабораторных работ, а так же практические работы в рамках физического практикума (40 часов). Кроме того, в примерной программе - 8 часов (во внеурочное время) определены для проведения экскурсий. Количество демонстраций, лабораторных работ и опытов может быть увеличено в соответствии с авторской программой, реализуемой в общеобразовательном учреждении, и технологией применяемой учителем.
Выполнение лабораторных работ физического практикума должно быть связано с организацией самостоятельной и творческой деятельности учащихся. Возможный вариант индивидуализации работы в лаборатории – это подбор нестандартных заданий творческого характера, например, постановка новой лабораторной работы, при этом меняется характер работы, т.к. всё это ученик делает первым, а результат неизвестен ни ему, ни учителю. Здесь, по существу, проверяется не физический закон, а способность ученика к постановке и выполнению физического эксперимента. Для достижения успеха необходимо выбрать один из нескольких вариантов опыта с учётом возможностей кабинета физики, подобрать подходящие приборы. Проведя серию необходимых измерений и вычислений, ученик оценивает погрешности измерений и, если они недопустимо велики, находит основные источники ошибок и пробует их устранить. Другим учащимся можно предложить индивидуальные задания исследовательского характера, где они получают возможность открыть новые, неизвестные закономерности или даже сделать изобретение. Самостоятельное открытие известного в физике закона или «изобретение» способа измерения физической величины является объективным доказательством способности к самостоятельному творчеству, позволяет приобрести уверенность в своих силах и способностях. В процессе исследований и обобщения полученных результатов школьники должны научиться устанавливать функциональную связь и взаимозависимость явлений; моделировать явления, выдвигать гипотезы, экспериментально проверять их и интерпретировать полученные результаты; изучать физические законы и теории, границы их применимости.
Федеральный компонент государственного образовательного стандарта по физике предполагает приоритет деятельностного подхода к процессу обучения, развития у учащихся умений проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач.
Современная организация учебной деятельности требует того, чтобы теоретические обобщения учащиеся дали на основе результатов собственной деятельности. Для учебного предмета «физика» - это учебный эксперимент.
Экспериментальные работы при обучении физике должны способствовать овладению учащимися не только конкретными практическими умениями, но и основами естественнонаучного метода познания, а это может быть реализовано через систему самостоятельных виртуальных лабораторных работ и исследований.
Разработчики федерального компонента государственного образовательного стандарта рекомендуют следующие критерии отбора содержания физического образования на профильном уровне:
1. Содержание школьного курса физики должно определяться обязательным минимумом содержания физического образования. Необходимо уделять особое внимание формированию у школьников физических понятий на основе наблюдений физических явлений и опытов, демонстрируемых учителем или выполняемых учащимися самостоятельно. При изучении физической теории необходимо знать экспериментальные факты, вызвавшие её к жизни, научную гипотезу, выдвинутую для объяснения этих фактов, физическую модель, использованную при создании данной теории, следствия, предсказанные новой теорией, и результаты экспериментальной проверки.
2. Дополнительные вопросы и темы по отношению к образовательному стандарту целесообразны, если без их знания представления выпускника о современной физической картине мира будут неполными или искажёнными. Так как современная физическая картина мира является квантовой и релятивистской, то более глубокого рассмотрения заслуживают основы специальной теории относительности и квантовой физики. Однако любые дополнительные вопросы и темы должны быть представлены в виде материала не для механического заучивания и запоминания, а способствующего формированию современных представлений о мире и его основных законах.
В соответствии с образовательным стандартом в курс физики для 10-го класса введен раздел «Методы научного познания». Ознакомление с ними необходимо обеспечить на протяжении изучения всего курса физики, а не только этого раздела. В курс физики для 11-го класса введен раздел «Строение и эволюция Вселенной», поскольку курс астрономии перестал быть обязательной составной частью общего среднего образования, а без знаний о строении Вселенной и законах её развития невозможно формирование целостной научной картины мира. Кроме того, в современном естествознании наряду с процессом дифференциации наук всё большую роль играют процессы интеграции различных ветвей естественнонаучного познания природы. В частности, физика и астрономия оказались неразделимо связанными при решении проблем строения и эволюции Вселенной в целом, происхождения элементарных частиц и атомов.
3. При изучении физики на профильном уровне учитель может дать в каждой теме дополнительный материал из истории этой науки или примеры практических приложений изученных законов и явлений. Например, при изучении закона сохранения импульса уместно ознакомить ребят с историей развития идеи космических полётов, с этапами освоения космического пространства и современными достижениями. Изучение разделов по оптике и физике атома надо бы завершить знакомством с принципом действия лазера и различными применениями лазерного излучения, включая голографию. Особого внимания заслуживают вопросы энергетики, включая ядерную, а также проблемы безопасности и экологии, связанные с её развитием.
4. Выполнение лабораторных работ физического практикума должно быть связано с организацией самостоятельной и творческой деятельности учащихся. Возможный вариант индивидуализации работы в лаборатории – это подбор нестандартных заданий творческого характера. Для достижения успеха необходимо выбрать один из нескольких вариантов опыта с учётом возможностей кабинета физики, подобрать подходящие приборы. Проведя серию необходимых измерений и вычислений, ученик оценивает погрешности измерений и, если они недопустимо велики, находит основные источники ошибок и пробует их устранить. Другим учащимся можно предложить индивидуальные задания исследовательского характера, где они получают возможность открыть новые, неизвестные закономерности или даже сделать изобретение. В процессе исследований и обобщения полученных результатов школьники должны научиться устанавливать функциональную связь и взаимозависимость явлений; моделировать явления, выдвигать гипотезы, экспериментально проверять их и интерпретировать полученные результаты; изучать физические законы и теории, границы их применимости.
5. Реализация интеграции естественнонаучных знаний должна обеспечиваться: рассмотрением различных уровней организации вещества; показом единства законов природы, применимости физических теорий и законов к различным объектам (от элементарных частиц до галактик); рассмотрением превращений вещества и преобразования энергии во Вселенной; рассмотрением, как технических применений физики, так и связанных с этим экологических проблем на Земле и в околоземном пространстве; обсуждением проблемы происхождения Солнечной системы, физических условий на Земле, обеспечивших возможность возникновения и развития жизни.