Смекни!
smekni.com

Краткий курс лекций (учебно-методическое пособие для студентов строительных специальностей) Харьков 2003 (стр. 1 из 9)

Министерство образования и науки Украины

Харьковская государственная академия городского хозяйства

В. А. Мазур

Металлические конструкции гражданских зданий и инженерных сооружений

Краткий курс лекций

(учебно-методическое пособие для студентов

строительных специальностей)

Харьков 2003

УДК

Мазур В.А. Металлические конструкции гражданских зданий и инженерных сооружений: Учебно-методическое пособие для студентов строительных специальностей. — Харьков: ХГАГХ., 2003 г. — 72 с.

В пособии в краткой форме изложены основные сведения о разнообразных несущих металлических конструкциях большепролётных зданий, стальных каркасах многоэтажных зданий, а также о листовых конструкциях и высотных сооружениях.

Ил. 40. Библ. 9 назв.

Рецензент: к.т.н. Рудаков В.Н., доцент кафедры строительных конструкций ХГАГХ.

Рекомендовано кафедрой строительных конструкций,

протокол № 5 от 10.01. 2003 г.

© Мазур В.А.

ХГАГХ, 2003 г.



Раздел 1. Металлические конструкции большепролётных

покрытий зданий

По функциональному назначению большепролётные здания можно разделить на:

1) здания общественного назначения (театры, выставочные павильоны, кинотеатры, концертные и спортивные залы, крытые стадионы, рынки, вокзалы);

2) здания специального назначения (ангары, гаражи);

3) промышленные здания (авиационных, судостроительных и машиностроительных заводов, лабораторные корпуса различных производств).

Несущие конструкции по конструктивной схеме подразделяются на:

— блочные,

— рамные,

— арочные,

— структурные,

— купольные,

— висячие,

— сетчатые оболочки.

Выбор той или иной схемы несущих конструкций здания зависит от целого ряда факторов: пролёта здания, архитектурно-планировочного решения и формы здания, наличия и типа подвесного транспорта, требований к жёсткости покрытия, типа кровли, аэрации и освещения, основания под фундаменты и т.д.

Сооружения с большими пролётами являются объектами индивидуального строительства, их архитектурные и конструктивные решения весьма индивидуальны, что ограничивает возможности типизации и унификации их конструкций.

Конструкции таких зданий работают в основном на нагрузки от собственного веса конструкций и атмосферных воздействий.

1.1 Балочные конструкции

Балочные большепролётные конструкции покрытий состоят из главных несущих поперечных конструкций в виде плоских или пространственных ферм (пролёт ферм от 40 до 100 м) и промежуточных конструкций в виде связей, прогонов и кровельного настила.

По очертанию фермы бывают: с параллельными поясами, трапециевидные, полигональные, треугольные, сегментные (см. схемы на рис. 1).

Высота ферм hф=1/8 ÷ 1/14L; уклон i=1/ 2 ÷ 1/15.

Треугольные фермы hф= 1/12 ÷ 1/20L; уклон поясов i=1/5 ÷ 1/7.

Рис.1 - Схемы строительных ферм

Поперечные сечения ферм:

1) плоские 2) коробчатые 3) трёхгранные

При L > 36м одну из опор балочной фермы устанавливают подвижной.

Компоновка покрытия — вертикальные и горизонтальные связи по покрытию решаются аналогично промышленным зданиям со стропильными фермами.

а) нормальная компоновка

стена

СФ L

б) усложнённая компоновка — с подстропильными фермами:

ПФ

СФ L

В В

Балочные схемы покрытий применяются:

— при любых видах подопорных конструкций — кирпичные или бетонные стены, колонны (металлические или железобетонные);

— когда подопорные конструкции не могут воспринимать распорных усилий;

— при строительстве зданий на просадочных или карстовых грунтах и подрабатываемых территориях.

Следует отметить, что балочные схемы покрытий тяжелее рамных и арочных, но просты в изготовлении и монтаже.

Расчёт ферм выполняют методами строительной механики (аналогично расчёту стропильных ферм промышленных зданий).

1.2 Рамные конструкции

Рамные конструкции для покрытий зданий применяют при пролёте

L=40 — 150м, при пролёте L > 150м они становятся неэкономичными.

Преимущества рамных конструкций по сравнению с балочными — это меньший вес, большая жёсткость и меньшая высота ригелей.

Недостатки — большая ширина колонн, чувствительность к неравномерным осадкам опор и изменениям Tо .

Рамные конструкции эффективны при погонных жесткостях колонн, близких к погонным жесткостям ригелей, что позволяет перераспределить усилия от вертикальных нагрузок и значительно облегчить ригели.

При перекрытии больших пролётов применяют, как правило, двухшарнирные и бесшарнирные рамы самых разнообразных очертаний (см. рис.2).

Рис. 2 - Схемы сквозных рам

Бесшарнирные рамы более жёсткие и экономичные по расходу материала, однако, они требуют устройства мощных фундаментов, чувствительны к изменению То.

При больших пролётах и нагрузках ригели рам конструируют как тяжёлые фермы, при сравнительно малых пролётах (40-50м) они имеют такие же сечения и узлы, как лёгкие фермы.

Поперечные сечения рам аналогичны балочным фермам.

Компоновка каркаса и покрытия из рамных конструкций аналогична решению каркасов промышленных зданий и балочных покрытий.

Статический расчёт рамных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ.

Тяжелые сквозные рамы рассчитывают как решёточные системы с учётом деформации всех стержней решётки.

1.3 Арочные конструкции

Арочные конструкции покрытий большепролётных зданий оказываются более выгодными по затрате материала, чем балочные и рамные системы. Однако в них возникает значительный распор, который передаётся через фундаменты на грунт или устраивается затяжка для его восприятия (т.е. погашение распора внутри системы).

Схемы и очертания арок весьма разнообразны: двухшарнирные, трёхшарнирные, бесшарнирные (см. рис. 3).

Наиболее выгодная высота арок: f=1/4 ÷ 1/6 пролёта L.

Высота сечения арок:

- сплошностенчатых 1/50 ÷ 1/80 L,

- решёточных 1/30 ÷ 1/60 L.

Рис.4 - Схемы опорных шарниров арок и рам (а — плиточный,

б — пятниковый, в — балансирный:

1 — плита, 2 — цапфа, 3 —балансир).

Рис. 5 - Ключевые шарниры и арок

(а —плиточный; б —балансирный; в —листовой; г —болтовой)

После определения M, N, Q сечения стержней арки подбирают также, как сечения стерней ферм:

а h в NНпояса=N×a/h+Mх/h; NВпояса=N×b/h+Mх/h; Nраскоса=Q/sin α . При расчете раскосов также необходимо учитывать дополнительные напряжения от обжатия поясов: Gдопраск= [(Gп.верх+Gп.ниж.)/2] ×cos α

1.4 Пространственные конструкции покрытий большепролётных зданий

В балочных, рамных и арочных системах покрытий, состоящих из отдельных несущих элементов, нагрузка передаётся только в одном направлении — вдоль несущего элемента. В этих системах покрытий несущие элементы соединены между собой лёгкими связями, которые не предназначены для перераспределения нагрузок между несущими элементами, а только обеспечивают их пространственную устойчивость, т.е. с их помощью обеспечивается жёсткий диск покрытия.

В пространственных системах связи усиливают и привлекают к распределению нагрузок и передаче их на опоры. Приложенная к пространственной конструкции нагрузка передаётся в двух направлениях. Такая конструкция получается обычно легче плоской.

Пространственные конструкции могут быть плоскими (плиты) и криволинейными (оболочки).

Плоские пространственные системы (исключая висячие) для обеспечения необходимой жёсткости должны быть двухпоясными — по поверхности образующие сетчатую систему. Двухпоясные конструкции имеют две параллельные сетчатые поверхности, соединённые между собой жёсткими связями.