Тогда искомое условие задачи имеет вид:
Ответ: а
(-3;0).Пример16. При каких значениях параметра а, корни уравнения х2-ах+2=0 принадлежат отрезку
?При требуемом условии расположения корней квадратного трехчлена х2-ах+2 соответствующая парабола располагается следующим образом:
Решение данной задачи определяется условием:
D≥0,f0≥0; f3≥0,0≤xв≤3;⇔ а2-8≥0,11-3а≥0,0≤а2≤3.
Решаем систему методом интервалов, откуда получаем, что а
22;113 .Ответ: а
22;113 .Заключение.
Таким образом, я рассмотрела часто встречающиеся типы уравнений и системы уравнений с параметрами и сделала следующие выводы:
· при решении многих задач с параметрами удобно воспользоваться геометрическими интерпретациями. Это часто позволяет существенно упростить анализ задач, а в ряде случаев представляет собой единственный «ключ» к решению задачи;
· существенным этапом решения задач с параметрами является запись ответа. Особенно это относится к тем задачам, где решение как бы «ветвится» в зависимости от значения параметра. В подобных случаях составление ответа – это сбор ранее полученных результатов.
Подготовка реферата позволила мне узнать много нового и интересного, подробно познакомиться с вопросами, которые на уроках изучаются кратко.
Оформление реферата способствовало совершенствованию и закреплению полученных мною на уроках информатики умений и навыков по редактированию и форматированию текстовых документов.
Я могу сказать, что научилась решать уравнения с параметрами, но не хочу останавливаться на достигнутом и в следующем году собираюсь продолжить работу по этой теме и рассмотреть примеры тригонометрических, логарифмических и показательных уравнений с параметрами.
Список литературы.
1. Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
2. Шарыгин И.Ф. Факультативный курс по математике: Решение задач.Учеб. пособие для 10 кл. средней школы – М.: Просвещение, 1989.
3. Васильев Ю.С., Витовтов П.Г. и др. Математика. Система дистанционного образования. Часть 1. Учебно-практическое пособие. – Челябинск: 2000.
4. Горнштейн Ш. Квадратные трехчлены и параметры. – Математика. -1999, №5.
5. Мещерякова Г.В. Задачи с параметрами, сводящиеся к квадратным уравнениям. –Математика в школе. №5, 2001.
6. Большой энциклопедический словарь. Математика. – М.: Научное издательство «Большая Российская энциклопедия», 1998.