Абаки использовались уже в V— IV вв. до н.э. Их изготавливали из бронзы, камня, слоновой кости, цветного стекла. Слово «абак» греческого происхождения и буквально означает «пыль», хотя его смысловое значение — «счетная доска». В чем тут дело? Ответ прост: изначально камешки раскладывали на совершенно ровной доске, а чтобы они не скатывались со своего первоначального положения, доска покрывалась тонким слоем песка или пыли. А от слова «камешек» (по латыни calculus) произошло название современного счетного прибора — «калькулятор».
Абак использовался и в Древней Греции, и в Древнем Риме, а затем и в Западной Европе вплоть до XVIII века. Он похож на знакомые вам счеты — косточки на вставленных в рамку металлических спицах.
Счеты использовали разные народы, и у каждого народа имеют свои особенности. Так, в русских счетах по десять косточек в каждом ряду, а в западноевропейских — по девять. У китайских счетов суан-пан на каждой проволоке по семь шариков, причем два отделены от остальных пяти. Каждый из этих двух шариков означает пять единиц данного разряда. Такое усовершенствование позволяет уменьшить число шариков в счетах.
В Японии и в наши дни проводятся соревнования по скорости счета между людьми, вооруженными японскими счетами соробан, и операторами вычислительных машин. Причем, как правило, побеждают вычислители на счетах. Ведь чтобы машина начала считать, для неё надо составить программу.
Шло время, и потребности людей в обработке числовой информации возрастали. В XVII веке физики и астрономы столкнулись с необходимостью произведения сложных и громоздких вычислений. Им требовались машины, способные выполнять большой объем вычислений за малое время и с высокой точностью.
В 1642 году знаменитым французским физиком и математиком Блезом Паскалем была создана и завоевала огромную популярность первая механическая счетная машина — арифмометр.
В 1677 году великий немецкий математик и философ Лейбниц сконструировал свою счетную машину, позволявшую не только складывать и вычитать, но также умножать и делить многозначные числа.
Большой вклад в усовершенствование счетных машин внесли русские ученые и инженеры. Так арифмометр, созданный в 1874 году русским инженером Однером, успешно конкурировал с лучшими арифмометрами европейских фирм и нашел применение во всем мире. Его модификация «Феликс» выпускалась в нашей стране до 50-х гг XX века.
Следующий важный этап развития вычислительной техники приходится на XIX век. В 1830 году английский математик, профессор Кембриджского университета Чарльз Беббидж разработал проект первой программируемой вычислительной машины.
Машина, придуманная Чарльзом Беббиджем, была похожа на настоящую фабрику по производству вычислений. На любой фабрике есть склад, где хранятся сырье и готовая продукция. Есть цех, где эта продукция производится. Есть контора, которая управляет производством. Машина Беббиджа имела подобную конструкцию. Набор специальных колес — склад чисел. Здесь запоминаются исходные данные и результаты вычисления. Механизм из шестеренок, рычагов и пружин — цех. Тут производятся вычисления. Есть и контора, которая управляет всем вычислительным процессом с помощью заранее подготовляемых вычислителем картонных лент с отверстиями — перфокарт. Машина считает сама — работает по программе. Результаты вычислений она пробивает на металлических пластинках. С таких пластинок их можно печатать без всякой переписки.
Несмотря на то, что машина Беббиджа представляла собой важный шаг вперед в технике вычислений, полностью осуществлена она не была. После двадцати пяти лет труда и огромных издержек изобретатель был вынужден отказаться от ее завершения.
В 1985 году в Музее науки в Лондоне решили выяснить, возможно ли построить эту машину вообще. Началась напряженная работа. И в год 200-летия со дня рождения знаменитого англичанина (1991 г.) машина была построена и произвела серьезные вычисления. Этот успех доказал, что неудачи изобретателя были вызваны упущениями в реализации замысла, а не ошибками в самом проекте.
Если Чарльз Бэббижд был первым, кому пришла идея использовать перфокарты применительно к вычислительной технике, то первым, кто практически реализовал эту идею, был американский инженер Герман Холлерит, разработавший машину для обработки результатов переписи населения.
Сотни людей занимались этой огромной работой. Надо было обойти все улицы во всех городах и поселках. Зайти в каждый дом и в каждую квартиру. Записать каждую семью и каждого человека. Наконец все данные собраны. И тут, оказывается, начинались главные трудности. Как обработать результаты переписи? Как сосчитать всех жителей страны? Да не просто сосчитать, а ответить на самые разные вопросы. Сколько в стране мужчин и женщин? Детей и стариков? Школьников и студентов? Сколько горожан и сельских жителей? Сколько рабочих, инженеров, врачей, учителей?.. На эту работу уходило до восьми лет. Если учесть, что в США перепись населения проводится каждые 10 лет, то получается, что, едва закончив обработку данных одной переписи, нужно было сразу приступать к новой.
Вот как, по рассказу самого Холлерита, пришла ему в голову идея создания нового счетчика. Однажды на железнодорожной станции он наблюдал за работой кондуктора, когда тот пробивал дырочки в билетах. Так обозначалась станция, до которой ехал пассажир. И Холлерит решил изготовить такие же карты для проводимой переписи населения. Он распределил вопросы так, чтобы ответ можно было обозначать дырочкой в строке. Пол и возраст, работа и место жительство — все обозначалось отверстиями. Все эти данные потом «прочитывались» машиной, которая прощупывала перфокарту системой игл. Если напротив иглы оказывалось отверстие, то игла, пройдя сквозь него, касалась металлической поверхности, расположенной под картой и замыкала контакт. К показаниям соответствующего счетчика автоматически добавлялась единица.
В 1890 году счетно-аналитическая машина Холлерита использовалась при обработке результатов очередной переписи и сократила её время с восьми до трех лет.
Первая полностью электронная вычислительная машина Эниак была построена в США в 1946 году. Её размеры были громадны: более 30 м в длину и 85 м3 по занимаемому объему. Её вес равнялся весу четырех африканских слонов — 30 т. Хранение и обработка данных в этом компьютере осуществлялась с помощью 18 тыс. электронных ламп. В нашей стране первая ЭВМ была построена в 1951 году.
В 1953 году наша промышленность стала выпускать электронную вычислительную машину «Стрела». Она состояла из десятков больших металлических шкафов, в которых находились сотни ламп. Рядом стояли мощные трансформаторы, обеспечивавшие нужное напряжение для ламп. Вы знаете, что электрические лампочки при работе сильно нагреваются. Чтобы охлаждать тысячи ламп первых компьютеров требовались мощные холодильные и вентиляторные установки. Вычислительная машина «Стрела» вместе со вспомогательным оборудованием занимала площадь в 500 квадратных метров. Этого хватило бы на 10 квартир.
Гигантские компьютеры на электронных лампах 50-х годов составили первое поколение вычислительных машин. Второе поколение компьютеров появилось около 1960 года, когда на смену электронным лампам пришли транзисторы.
Вы знаете, что металлы — серебро, медь, алюминий проводят электрический ток. Их называют проводниками. Стекло, фарфор, пластмассы ток не проводят. Это — изоляторы. А вот некоторые редкие вещества — кремний, германий, селен — то проводят электрический ток, то не проводят, в зависимости от его направления. Эти вещества наполовину изоляторы, наполовину проводники. Их называют полупроводниками. Они и стали основой для транзисторов — маленьких кристалликах полупроводника с двумя металлическими усиками-проводками. Транзистор был значительно меньше лампы, весил несколько граммов и практически не грелся. К тому же 1 транзистор был способен заменить 40 ламп. Машины стали значительно меньше, надежнее, их быстродействие возросло.
Рождение машин третьего поколения связывают с появлением интегральных схем — кремниевых кристаллов с миниатюрной электронной схемой. Слово «интегральный» значит «цельный, единый». Размер такой схемы — не больше горошины, а транзисторов в нем упакованы тысячи. Машины уменьшились на столько, что уже могли размещаться на письменном столе.
С развитием микроэлектроники появилась возможность размещать на кристалле не одну, а тысячи интегральных схем. В 1980 году на кристалле площадью около 1,5 см2 удалось разместить центральный процессор небольшой ЭВМ. Началась эпоха микрокомпьютеров.
Процесс развития вычислительной техники продолжается и сегодня. Можно предположить, что в скором времени компьютеры станут еще более мощными, еще меньшими по размерам и еще более простыми в использовании.
Во второй части плаката приведена схема «Обработка информации».
Обработка информации – это решение информационной задачи или процесс перехода от исходных данных к результату.
Обработка информации бывает двух типов:
1) обработка, связанная с получением нового содержания, новой информации;
2) обработка, связанная с изменение формы информации, но не изменяющая её содержания.
Обработка информации, связанная с изменением её формы, но не изменяющая содержания, происходит при систематизации информации, поиске информации, кодировании информации.