| ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Самарский государственный Технический университет» |
К а ф е д р а «Высшая математика и
прикладная информатика»
ЛИНЕЙНАЯ АЛГЕБРА,
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ,
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА.
Учебно-методическое пособие
по специальным разделам высшей математики
Самара 2005
Составители: Л.В. Лиманова, Л.А. МУРАТОВА
УДК 517.531, 519.2
Линейная алгебра, аналитическая геометрия, начала математического анализа. Учебно-метод. пособ. по спец. главам высш. матем./ Самар. гос. техн. ун-т. Сост. Л.В. Лиманова,
Л.А. Муратова. Самара, 2005. 49 с.
Представлены задачи и их решения из следующих разделов курса высшей математики: линейная алгебра, аналитическая геометрия, математический анализ.
Пособие предназначено для студентов всех специальностей СамГТУ.
Ил. . Библиогр.: 6 назв.
Печатается по решению редакционно-издательского совета СамГТУ
В соответствии с программой курса высшей математики для 1 семестра СамГТУ пособие охватывает такие разделы, как линейная алгебра, аналитическая геометрия, теория пределов, дифференциальное исчисление.
Пособие содержит тренировочный тест (стр.37) с типовыми задачами из указанных разделов.
Представлены подробные решения всех задач тренировочного теста, а также необходимый теоретический материал.
Пособие рекомендуется использовать для подготовки к экзамену по высшей математике. Внимательное изучение настоящего пособия позволит успешно справиться с этой задачей.
ЗАДАЧИ И РЕШЕНИЯ
Задача 1. Найти сумму элементов 3-его столбца матрицы В, если
Решение. При умножении матрицы размера
Аналогично, находим
Тогда сумма этих элементов
Задача 2. Найти
.
Решение. Вычислим определитель матрицы А:
Так как
Здесь
Найдем алгебраические дополнения элементов
где
Получим
Итак,
Наконец, находим обратную матрицу
Задача 3. Найти сумму элементов 3-ей строки матрицы
Решение. Вычислим определитель матрицы А:
Запишем транспонированную матрицу
Так как надо найти сумму элементов 3-ей строки матрицы
Тогда элементы 3-ей строки матрицы
Их сумма равна
Задача 4. Дана система уравнений
Найти
Решение. Согласно формулам Крамера решение системы определяется соотношениями
Найдем
Чтобы найти
Находим z:
Задача 5. Решить систему уравнений, приняв в качестве базисных переменных y и z:
Решение. Решаем систему методом Гаусса. Запишем расширенную матрицу системы – матрицу из коэффициентов при неизвестных и свободных членов.