а координаты центра давления соответственно равны:
(1.24)Рассматривая силу давления на цилиндрическую поверхность с вертикальной образующей, легко получить так называемую «котельную» формулу (Мариотта), которая дает связь между диаметром d трубы и ее толщиной d стенок, с давлением р в трубопроводе и напряжением s в ее стенках [1, c.50]:
(1.25)Г р а ф о а н а л и т и ч е с к и й с п о с о б. Для определения результирующей силы давления на криволинейную поверхность необходимо построить эпюру манометрического давления горизонтальной составляющей и поперечное сечение тела давления (см.рис.1.12). Эпюра манометрического давления горизонтальной составляющей строится аналогично, как на плоскую поверхность, а правило построения поперечного сечения тела давления следует из определения объема тела давления. Составляющая Fx результирующей силы F определяется как объем эпюры манометрического давления, а Fz – по формуле (1.21).
Для наглядного выяснения соотношения составляющих сил Fx и Fz необходимо, чтобы площади эпюры давления и поперечного сечения тела давления были изображены в одинаковом масштабе. С этой целью рекомендуется выбирать масштаб давлений таким образом, чтобы отрезок на эпюре, показывающей давление в точке, был в случае однородной жидкости по величине равен высоте столба жидкости над точкой и выражался в линейном масштабе (например, если масштаб линейных величин 1:100, т.е. 1 см соответствует 1 м, то масштаб давлений равен 1 см – 1×rg кПа; если масштаб линейных величин 1:50, то масштаб давлений 1 см – 0,5×rg кПа и т.д.).
Для нахождения точки приложения результирующей силы давления определяются центры тяжести эпюры манометрического давления горизонтальной составляющей и поперечного сечения тела давления вертикальной составляющей. Результирующая сила
проходит через точку пересечения составляющих и центр кривизны криволинейной поверхности, точка пересечения которой с криволинейной поверхностью является центром давления. Начало координат рекомендуется принимать в центре кривизны (см. рис.1.12).Пример 1.6. Определить результирующую силу давления воды на затвор шириной в =5 м, перекрывающий канал между двумя смежными камерами (рис.1.13), если глубина воды: в левой камере h1=6 м; в правой h2=3 м; радиус затвора R=6 м; h=2 м; а=1 м. Координаты центра давления определить аналитическим и графическим способами.
Решение. Горизонтальная составляющая
силы давления F на затвор (1.26)где
– горизонтальные составляющие силы давления F на затвор соответственно слева и справа (см. рис.1.13).Для нахождения этих сил криволинейную поверхность затвора АВС проектируем на вертикальные плоскости n1–n1 и n2–n2 и находим их аналогично, как на плоские поверхности по формуле (1.21):
Рис.1.13. Расчетная схема.
Тогда
=490,5–196,2=294,3 кН.Вертикальная составляющая Fz силы давления F на затвор
где
– вертикальные составляющие силы давления F на затвор соответственно слева и справа (см. рис.1.13), определяемые по зависимостям:где l – длина проекции криволинейной поверхности на горизонтальную плоскость.
откуда a = arcsin 0,333=19,50;
откуда b = arcsin 0,667 = 41,80;
g = b – a = 41,8 – 19,5 = 22,30.
Тогда
Fz=302,2 – 125,7=176,5 кН.
Результирующая сила давления определяется по формуле (1.26)
=343,2 кН.Определим координаты центра давления аналитическим способом. Для этого определим направление результирующей силы по соотношению (1.23)
Координаты центра давления определим по соотношению(1.24)
м, м.При выбранном направлении осей (см. рис.1.13) координаты центра давления должны быть с отрицательным знаком.
Определим координаты центра давления графическим способом. Выбираем масштаб линейных величин 1:100, а масштаб давлений – 1см – 9,81 кПа. Для построения эпюры манометрического давления горизонтальной составляющей Fx определим давление в точках А и С слева и справа затвора:
р¢А = rg(h1–h) = 1000×9,81×(6–2) = 39,24 кПа;
р¢С = rgh1 = 1000×9,81×6 = 58,86 кПа;
р²А = rg(h2–h) = 1000×9,81×(3–2) = 9,81 кПа;
р²С = rgh2 = 1000×9,81×3 = 29,43 кПа.
Построение эпюр манометрического давления слева и справа на проекции криволинейной поверхности затвора n1–n1 и n2–n2 производится аналогично, как и на плоскую поверхность. Так как манометрическое давление на затвор слева и справа имеет противоположное направление, то результирующая эпюра горизонтальной составляющей Fx будет равна разности эпюр. На чертеже (рис.1.14) она показана заштрихованным прямоугольником MNLF.
Рис.1.14. Графическое определение координат центра давления.
Поперечные сечения тела давления слева и справа также имеют противоположные направления. Следовательно, результирующее поперечное сечение тела давления будет равно разности и на чертеже (см. рис.1.14) показано заштрихованным прямоугольником BKDE.
Находим центры тяжести результирующей эпюры манометрического давления и поперечного сечения тела давления, через которые проводим направления сил Fx и Fz до их пересечения (точка О¢ ) и полученную линию продолжаем в левую сторону до пересечения с криволинейной поверхностью затвора. Точка пересечения и является центром давления. Измеряем координаты Х и Z относительно центра О. Графически Х = -5,1 м, Z = -3,1 м, что совпадает с ранее вычисленными. Проверка координат центра давления двумя способами показывает, что расчет сделан верно.
Ответ: F=343,2 кН; Х=–5,1 м; Z=–3,1м.
Более полно решение задач по этой теме приводится в литературе [3, c.32–37; 4,с.26–33].
1.5. Простые гидравлические машины
На способности жидкости передавать изменение внешнего давления во все точки занятого ею пространства основан принцип действия многих гидравлических машин. В практике находят широкое применение такие простые гидравлические машины, как домкраты, подъемники, гидравлические прессы, мультипликаторы (повысители давления), гидравлические аккумуляторы и др. При расчете простейших гидравлических машин используются закон равновесия жидкости, давление жидкости на плоские и криволинейные поверхности, законы механики твердого тела.
В основной рекомендуемой учебной литературе [1] эта тема вообще не рассматривается, а в литературе [2, c.50, 51] излагается только общая методика гидравлического расчета гидравлического пресса и мультипликатора, хотя в практике находят широкое применение различные простейшие гидравлические машины и, в частности, гидроподъемники. Пример одной из конструкций гидроподъемника показан на рис. 1.15, расчет которого покажем на примере.
Пример 1.7.Определить диаметр D1 гидравлического цилиндра, необходимый для подъема задвижки при избыточном давлении воды ри=294,3 кПа, если диаметр трубопровода D2=200 мм и масса подвижных частей устройства М=48 кг, коэффициент трения задвижки в направляющих поверхностях f=0,5, сила трения в цилиндре равна 10% от веса подвижных частей. Давление за задвижкой равно атмосферному. Площадью сечения штока пренебречь.
Решение. Для определения величины диаметра цилиндра предварительно составим уравнение равновесия всех сил на вертикальную ось, действующих на систему задвижка – поршень цилиндра, которое имеет следующий вид:
Рис.1.15. Схема гидравлического подъемника.
Fп – Fтр – Fц – G = 0, (1.27)
где Fп – сила, действующая на поршень цилиндра,
Fп = pиwц = ри×0,785D12;
wц – площадь сечения цилиндра;
Fтр– сила трения задвижки в направляющих поверхностях,
Fтр = f×F3 = f рц ω3 = f×рц×0,785D22;
F3 – сила гидростатического давления на задвижку;