Целью инженерно-геологических изысканий является определение физико-механических и деформативных характеристик грунтов основания, а также определение положения уровня подземных вод, в том числе, с учетом его сезонных колебаний и химического состава для уточнения характера и степени агрессивности по отношению к материалу фундаментов.
Обследование фундаментов включает выявление конструкции, определение геометрических размеров и формы, характера и материала кладки фундаментов, а также механической прочности материала кладки и связующего раствора, определение наличия, типа и материала гидроизоляции - горизонтальной и вертикальной. Подлежит расчету и величина фактического давления сооружения в отдельных его частях и в целом на грунты основания (5, 9).
В России, несмотря на довольно большой опыт, до настоящего времени не существует норм и правил по проектированию фундаментов при реконструкции и реставрации зданий и сооружений. Нет также документов, регламентирующих объем и характер изысканий, выполняемых в комплексе работ по обследованию эксплуатируемых зданий и сооружений.
Фактическое давление на грунты основания, уплотнившиеся под воздействием длительной нагрузки от здания рассчитывали по допускаемому давлению, принимаемому для нового строительства, с повышающими коэффициентами 1.1 - 1.5, в зависимости от вида грунта. Давление под подошвой фундаментов для всех случаев реконструкции разрешалось увеличивать до значений, превышающих допустимое по нормам нового строительства на 40%, но лишь в том случае, если в несущих конструкциях реконструируемого здания отсутствуют трещины от неравномерных осадок. СниП II-Б.1-62* разрешалось повышать допускаемое давление на грунты под существующими фундаментами, при их достаточной прочности, до 20%. Для предварительных расчетов, новое допускаемое давление на уплотненные грунты основания R" рекомендовалось определять по формуле
R" = k.R,
где R" - нормативное сопротивление грунта основания, определяемое для нового строительства
k - коэффициент увеличения сопротивления грунта, зависящий от соотношения p/R;
р - фактическое давление на грунты основания до реконструкции, МПа
Значения коэффициента "k"
p/Rn | 1 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
1.5 | 1.45 | 1.4 | 1.35 | 1.3 | 1.25 | 1.2 | 1.15 | 1.1 | 1.05 |
Коэффициент "k" применим при следующих условиях:
- срок службы реконструируемого здания не менее 3 лет для песчаных грунтов, 5 лет для суглинков и супесей, 8 лет для глин;
- здание не должно иметь трещин, деформаций и прочих свидетельств неравномерных осадок;
Если фактическое давление р оказывается больше R, то необходимо увеличение площади подошвы фундаментов, дополнительное заглубление или другой вид усиления фундаментов или искусственное улучшение строительных свойств грунтов основания. Введение повышающего коэффициента к величине допускаемого давления исходя только из срока службы здания и фактического давления на грунты основания тем не менее не решают полностью проблему дальнейшей безопасности эксплуатации зданий, так как при этом не учитываются возможные деформации. Кроме того, не принимаются в расчет предельно допустимые для данного сооружения осадки и его способность противодействовать развитию неравномерных осадок (1, 2).
При этом следует иметь в виду, что наряду с решением многих задач, связанных с усилением фундаментов, правильному решению проблемы в значительной степени способствует выявление конструктивной схемы здания и определение действующих в уровне фундаментов нагрузок.
В конечном счете, решение вопроса о возможности передачи дополнительных нагрузок на существующие фундаменты и грунты основания, а также необходимость их усиления остается за проектировщиком и зависит от его опыта и интуиции.
В течение многих столетий и до начала ХХ века конструкции фундаментов зданий и сооружений различного назначения почти не претерпели существенных изменений. Как правило, это были бутовые, валунные и кирпичные ленточные и столбчатые фундаменты, кладка которых осуществлялась в траншеях или котлованах с использованием для скрепления отдельных элементов конструкции известковых растворов различного состава. В ряде случаев применялись глиносодержащие растворы, играющие одновременно роль горизонтальной гидроизоляции, а иногда кладка фундаментов, в основном в подошвенной их части, выполнялась из валунов или блоков рваного естественного камня насухо, без скрепляющего раствора.
До ХХ столетия здания возводились без сколько-нибудь серьезного изучения свойств грунтов основания ниже глубины заложения фундаментов. Неполными были также сведения о грунтовых водах, их свойствах и колебаниях уровней. Лишь в конце ХIХ, начале ХХ в.в. произошло становление как науки механики грунтов и грунтоведения.
Как правило, основанием зданий старой постройки служили естественные грунты, без какой-либо их обработки. Во многих случаях основанием фундаментов зданий, особенно в городской застройке, служили насыпные грунты культурного слоя или насыпные грунты, использованные для выравнивания площадки застройки, засыпки колодцев, ям, оврагов и других неровностей рельефа.
При высоком уровне подземных вод или заведомо слабых грунтах основания применялись свайные фундаменты. Чаще всего это были короткие, клиновидной формы сваи из хвойных и лиственных пород древесины диам. 100-150 мм, грубо обработанные и даже неошкуренные, забивавшиеся по всей по всей площади подошвы фундамента и за ее пределами с целью уплотнения грунтов основания. Примером такого типа фундаментов могут служить фундаменты звонницы московского Кремля, Успенского собора в г. Дмитрове и многих других памятников архитектуры ХVI-XVIII в.в.
Вместе с тем применялись и свайные фундаменты, которые по характеру работы в грунте соответствуют современному пониманию свайных фундаментов. Это сваи длиной до нескольких метров, изготавливавшиеся из цельных стволов деревьев твердых пород, например дуба, диаметром до 250-300 мм, забивавшиеся в пределах площади опирания фундаментов как в виде лент, так и кустов под ленточные и отдельно стоящие фундаменты. По сваям обычно устраивался деревянный ростверк из лежней бревенчатых или досчатых, располагаемых как вдоль, так и поперек направления фундаментной ленты, на которых затем выполнялась кладка фундаментов. Примерами таких конструкций могут служить фундаменты мостов, крепостных и монастырских стен, массивных каменных сооружений - колоколен, соборов и т.п. Эффективность таких фундаментов определялась положением уровня подземных вод, так как известно, что находящаяся ниже уровня воды древесина может сохраняться веками, тогда как в зоне переменного уровня воды разрушение ее идет весьма интенсивно. Этим обстоятельством объясняется наличие значительных деформаций и неравномерных осадок зданий старой постройки.
Кладка фундаментов выполнялась, главным образом, из бута, валунного камня или крупных блоков и плит естественного камня. Устраивались они в виде столбов или лент с различной площадью поперечного сечения, симметричной и несимметричной, сплошными или, с целью экономии материала, с разгрузочными арками по длине ленты.
С начала ХХ века с развитием техники и изобретением новых строительных материалов в качестве материала фундаментов стали применять хорошо обожженный кирпич и естественный камень на цементосодержащих растворах, бутобетон из бетонной массы с заполнением ее камнем средних размеров и монолитный бетон (3, 4).
На рис.1 представлены наиболее характерные типы фундаментов традиционных конструкций зданий старой постройки: бутовые фундаменты, в том числе с использованием лежней и деревянных свай (рис.1а-е), ступенчатой формы с расширением к нижней части при угле не менее 60. Бутобетонные и бетонные фундаменты имеют примерно такую же форму и габариты. При наличии в зданиях подвальных помещений их лицевые поверхности выполнялись из обработанных блоков естественного камня, уложенного в перевязку или заанкеренных в кладку фундаментов.
Рис. 1
При проведении обследования состояния зданий старой постройки во многих случаях наблюдаются различные дефекты и разрушения в кладке фундаментов, связанные с деформациями основания и, прежде всего, с неравномерными осадками, влияние которых сказывается на состоянии здания в целом (11, 12).
Причины таких деформаций многообразны, и в частности: погрешность в оценке несущей способности грунтов основания вследствие ошибочной интерпретации данных при определении свойств грунтов, особенно таких как просадочные, пучинистые, набухающие и др.; просчеты в выборе конструкции фундаментов, их размеров и глубины заложения; отсутствие деформационных швов на стыках разнонагруженных частей зданий; изменение прочностных характеристик грунтов вследствие изменения их влажности, например, при отсутствии или нарушениях вертикальной планировки, нарушении поверхностного водоотвода и дренажных систем; разру3ения кладки фундаментов под воздействием агрессивных грунтовых вод; гниение деревянных конструкций фундаментов при изменении положения или колебаниях уровня подземных вод; увеличение нагрузок на фундаменты в здании в целом или в отдельных его частях за счет надстроек и перестроек; систематическая откачка вод из подвальных помещений, вызывающая ослабление грунтов основания при их суффозии; устройство различных раскопов рядом с существующим зданием; понижение пола подвального помещения; использование некачественного материала при устройстве фундаментов; воздействие природных и климатических факторов, например многократного замораживания и размораживания переувлажненной кладки фундаментов в пределах глубины промерзания и многих других причин и их сочетаний (10, 12).