Ε – модуль продольной упругости (модуль упругости первого рода или модуль Юнга),
ε – относительное удлинение (или осевое укорочение).
Модуль продольной упругости имеет размерность напряжения МПа или Па (1 МПа = 106 Па) и характеризует жесткость материала, его способность сопротивляться упругому деформированию.
Для участка бруса длиной l, на котором постоянны продольная сила и площадь поперечного сечения, закон Гука можно записать в виде:
.Это вторая форма закона Гука. Произведение ЕА называют жесткостью сечения. При расчетах на растяжение и сжатие используют основной принцип прочности детали: действующие или расчетные напряжения ни в одной точке детали не должны превышать допускаемые напряжения.
Так как при растяжении (сжатии) во всех точках сечения напряжения одинаковы, то при расчете бруса на прочность определяют положение наиболее напряженного (опасного) поперечного сечения. Если брус имеет постоянное по его длине поперечное сечение, то опасным является сечение, в котором возникает наибольшая продольная сила N. Если значение продольной силы во всех сечениях одинаково, то опасным является сечение с наименьшей площадью. Для определения опасного сечения бруса при изменяющихся по его длине площади поперечного сечения и продольной силе необходимо строить эпюру нормальных напряжений.
Условие прочности бруса при растяжении (сжатии), составленное для опасного сечения, имеет вид:
.Условие прочности в словесной форме можно записать следующим образом:
Действующее (расчетное) напряжение = | Внутреннее усилие | ≤ Допускаемое напряжение |
Характеристика поперечного сечения |
Форма сечения бруса не влияет на его прочность при растяжении (сжатии). Форму сечения бруса необходимо знать только для определения размеров сечения при известном сечении площади.
С помощью условия прочности выполняют три вида расчетов: проверочный расчет, проектный расчет и определение допускаемой нагрузки.
Надо знать, что в ряде случаев необходимые для расчета бруса усилия невозможно найти только из уравнений равновесия. Такие задачи называют статически неопределимыми. При решении таких задач уравнения, которых не хватает для определения усилий, составляют из условия деформации бруса или системы.
1. Как нужно нагрузить прямой брус, чтобы он испытывал только растяжение (сжатие)?
2. Чем отличаются внутренние силовые факторы, возникающие при растяжении и сжатии?
3. Что называется продольной силой в сечении бруса? Как ее определить?
4. Что называется эпюрами продольных сил и нормальных напряжений? Как они строятся?
5. Определите продольную силу в каждом из поперечных сечений бруса (рис. 5) и постройте эпюры продольных сил.
3 2 1
50 кН 20 кН
3 2 1
Рис. 5
6. Выберите из приведенных на рис. 6 эпюр продольных сил ту, которая соответствует схеме нагружения бруса. Приведите схемы нагружения бруса, которые будут соответствовать остальным эпюрам продольных сил.
20 кН 12 кН 8 кНа)
20 кН 8 кН
б)
6кН
в)16 кН 8 кН
4 кН
г)20 кН 4 кН
8 кН
д)
8 кН 6 кН
4 кН
Рис. 6
7. Что такое продольная и поперечная деформация бруса при растяжении (сжатии)? Напишите формулы для определения величин абсолютного и относительного удлинения или укорочения.
8. Что такое коэффициент Пуассона? Отчего зависит его величина?
9. По какой формуле определяется величина напряжения в поперечном сечении стержня?
10. Как распределяются напряжения по поперечному сечению бруса при растяжении (сжатии)?
11. Какая геометрическая характеристика сечения характеризует его прочность и жесткость при растяжении (сжатии)?
12. Зависит ли возникающее при растяжении (сжатии) напряжение:
– от материала бруса;
– от формы поперечного сечения?
13. Сформулируйте закон Гука и приведите формулу, выражающую этот закон.
14. Как определяется удлинение (укорочение) участка бруса с постоянным поперечным сечением и постоянной силой по всей его длине?
15. Какая величина в формуле закона Гука характеризует жесткость материала?
16. Во сколько раз изменится удлинение бруса, если при прочих равных условиях:
а) увеличить длину бруса в два раза;
б) увеличить диаметр бруса в два раза?
Как отразятся подобные изменения на прочности бруса?
17. Стальной стержень квадратного сечения, у которого модуль продольной упругости Е = 2 · 105 МПа, длина L = 0,6 м, закреплен одним концом и нагружен на другом конце растягивающей силой F = 40 кН. Определите:
а) нормальное напряжение в поперечном сечении;
б) изменение длины стержня.
18. Что называется допустимым напряжением материала? Почему оно должно быть ниже предела пропорциональности данного материала?
19. До какого предельного напряжения, являющегося механической характеристикой пластичного материала, можно нагружать брус, не опасаясь появления пластической деформации?
20. Для какого материала допустимое напряжение определяют по пределу текучести sт, а для какого по пределу прочности sв?
21. Что называется коэффициентом запаса прочности и каковы его численные значения, исходя из свойств материала?
22. Сформулируйте условия прочности и запишите в математической форме это условие при расчете на растяжение и сжатие.
23. Сколько различных видов расчета можно произвести с помощью условия прочности?
24. Напишите формулы, по которым:
а) проверяется действительное напряжение в сечении бруса;
б) подбирается площадь поперечного сечения и определяется величина допустимой нагрузки при заданном значении бруса.
25. При проверке прочности различных элементов конструкции, для материала которых допускаемое напряжение принято 160 МПа, фактические расчетные напряжения оказались равными 110, 155, 160, 167 и 180 МПа. Какие из перечисленных случаев соответствуют:
а) недостаточной прочности;
б) недостаточной жесткости;
в) достаточной прочности и экономичности?
26. Для бруса, показанного на рис. 7, определить диаметр, считая его по всей длине постоянным. Допускаемое напряжение для материала (Ст 3) принять равным 160 МПа.
12 кН 5 кН
Рис. 7
27. Определить допустимое значение нагрузки F по условию прочности стержня СВ, выполненного из стальной полосы 3´8 мм.
Принять [s] = 160 МПа, АD = 0,5м, DВ = 0,7м.
Рис. 8
28. Какие системы (конструкции) называются статически определимыми и какие – статически неопределимыми?
29. Каков порядок решения статически неопределимых задач?
30. Что называется напряженным состоянием в точке тела? По каким формулам определяются нормальные и касательные напряжения, возникающие в наклонных площадях в случае плоского напряженного состояния?
ТЕМА 3
Механические свойства материалов
при растяжении и сжатии
Литература: Степин П. А. § 10, Ицкович Г. М. § 2.6–2.8
При изучении этой темы необходимо уделить основное внимание вопросу испытания материалов, основным механическим характеристикам прочности материала: пределов пропорциональности, упругости, текучести и прочности (временное сопротивление), учесть, что числовые их значения условны, так как для их нахождения соответствующие силы делят на первоначальную площадь поперечного сечения испытываемого образца.
При опытном изучении деформации растяжения очень важной характеристикой является пластичность материала, которая характеризуется величиной относительного удлинения после разрыва образца
и относительного сужения площади поперечного сечения
, гдеА0 – первоначальная площадь сечения образца,
Аш – площадь сечения шейки образца после разрыва.
1. Между какими величинами выражает зависимость диаграмма растяжения?
2. Как строится диаграмма растяжения?
3. Что называется пределом пропорциональности?
4. Что называется пределом упругости?
5. Что называется пределом текучести?
6. Что называется пределом прочности?
7. Каким механическим характеристикам материала соответствуют точки А, В, С, D на диаграмме растяжения (рис. 9)?
D
С Е
А В
e
Рис. 9
8. Какие материалы принято считать пластичными, хрупкими?
9. Какие механические характеристики, полученные при его испытании на растяжение, служат для оценки пластичности?