Пусть
и . Тогда сеть узлов будет иметь следующие координаты:и
Для сокращения введём обозначение
Применяя формулу (15) к каждому из прямоугольников крупной сети, будем иметь (рис.6):
Отсюда, делая приведение подобных членов, окончательно находим:
(16)где коэффициенты
являются соответствующими элементами матрицы Если область интегрирования – произвольная, то строим параллелепипед , стороны которого параллельны осям координат (рис. 83). Рассмотрим вспомогательную функциюВ таком случае, очевидно, имеем:
Последний интеграл приближённо может быть вычислен по общей кубатурной формуле (16).
2.5 Принципы построения программ с автоматическим выбором шага
При написании программ численного интегрирования желательно, чтобы для любой функции распределение узлов являлось оптимальным или близким к нему. Однако в случае резко меняющихся функций возникают некоторые проблемы. Если первоначальная сетка, на которой исследуется подынтегральная функция, частая, то сильно загружается память ЭВМ; если она редкая, то не удаётся хорошо аппроксимировать оптимальное распределение узлов на участках резкого изменения подынтегральной функции. Рассмотрим некоторые из процедур распределения узлов интегрирования, обеспечивающие лучшее приближение к оптимальному распределению узлов для функций с особенностями.
Пусть на элементарном отрезке интегрирования
вычисляется приближённое значение интеграла и мера погрешности . Требуется вычислить . Первая процедура, которую естественно назвать горизонтальной, определяется заданием параметров . Полагаем . Предположим, что каким-то образом уже вычислено приближённое значение интеграла . Программа располагает в каждый момент времени некоторым значением , с которым надо начинать считать оставшуюся часть интеграла. Вычисляем величину , соответствующую отрезку . Если оказалось , то вычисляем приближённое значение и полагаем . Мы получили приближённое значение величины . В случае полагаем , в противном случае полагаем . Мы готовы к следующему шагу. Если оказалось , то принимаем за новое значение величины и возвращаемся к исходной позиции: вычислено значение интеграла и задан шаг . Начальные условия для применения процедуры:Процедура должна также иметь блок окончания работы: если оказалось, что
, то следует положить . Установилась практика брать .Другая процедура, которую можно назвать вертикальной, определяется заданием числа
и заключается в следующем. Пусть на каком-то шаге возникает необходимость вычисления интеграла по отрезку разбиения : ; вычисляется величина , соответствующая этому отрезку. Если она оказалась меньше , то этот интеграл вычисляется по соответствующей формуле и программа переходит к следующему справа отрезку разбиения. В противном случае отрезки и объявляются отрезками разбиения, и программа обращается к вычислению интеграла по левому из этих отрезков. В начале работы программа обращается к вычислению исходного интеграла . Некоторым недостатком этой процедуры является необходимость запоминания отрезков разбиения, интегрирование по которым на данный момент не произведено.3 Список использованной литературы.
1. Бахвалов Н.С. Численные методы. т.1 – М.: Наука. 1975.
2. Демидович Б.П., Марон И.А. Основы вычислительной математики. – М.: Наука, 1966.
3. Калиткин Н.Н Численные методы. – М.: Наука, 1978.
4. Мусіяка В.Г. Основи чисельних методів механіки. – Дніпропетровськ: Видавництво ДДУ, 1993.
4.1 Решение задачи