Министерство образования Украины
Днепропетровский государственный университет
–––––––––––––––––––––––––––––––––––––––––––––
Факультет прикладной математики
Кафедра вычислительной механики и прочности конструкций
КУРСОВАЯ РАБОТА
по численным методам в механике
на тему
Вычисление кратных интегралов
методом ячеек
с автоматическим выбором шага
Исполнитель: студент группы ПД-97-1 Коваленко А.В.
Руководитель: профессор Мусияка В.Г.
Днепропетровск 1999
Содержание
1 Постановка задачи
Найти при помощи метода ячеек значение интеграла
, где – область, ограниченная функциями .2 Теоретическая часть
Рассмотрим K-мерный интеграл вида:
(1)где
- некоторая K-мерная точка. Далее для простоты все рисунки будут сделаны для случая K=2.2.1 Понятие о кубатурных формулах
Кубатурные формулы или, иначе формулы численных кубатур предназначены для численного вычисления кратных интегралов.
Пусть функция определена и непрерывна в некоторой ограниченной области . В этой области выбирается система точек (узлов) . Для вычисления интеграла приближённо полагают: (2)Чтобы найти коэффициенты
, потребуем точного выполнения кубатурной формулы (2) для всех полиномов (3)степень которых не превышает заданного числа
. Для этого необходимо и достаточно, чтобы формула (2) была точной для произведения степеней . Полагая в (1) , будем иметь: (4)Таким образом, коэффициенты
формулы (2), вообще говоря, могут быть определены из системы линейных уравнений (4).Для того чтобы система (4) была определённой, необходимо, чтобы число неизвестных
было равно числу уравнений. В случае получаем:2.2 Метод ячеек
Рассмотрим K-мерный интеграл по пространственному параллелепипеду
. По аналогии с формулой средних можно приближённо заменить функцию на её значение в центральной точке параллелепипеда. Тогда интеграл легко вычисляется: (5)Для повышения точности можно разбить область на прямоугольные ячейки (рис. 2). Приближённо вычисляя интеграл в каждой ячейке по формуле средних и обозначая через
соответственно площадь ячейки и координаты её центра, получим: (6)Справа стоит интегральная сумма; следовательно, для любой непрерывной
она сходится к значению интеграла, когда периметры всех ячеек стремятся к нулю.Оценим погрешность интегрирования. Формула (5) по самому её выводу точна для
. Но непосредственной подстановкой легко убедиться, что формула точна и для любой линейной функции. В самом деле, разложим функцию по формуле Тейлора: (7)где
, а все производные берутся в центре ячейки. Подставляя это разложение в правую и левую части квадратурной формулы (5) и сравнивая их, аналогично одномерному случаю легко получим выражение погрешности этой формулы: (8)ибо все члены разложения, нечётные относительно центра симметрии ячейки, взаимно уничтожаются.
Пусть в обобщённой квадратурной формуле (6) стороны пространственного параллелепипеда разбиты соответственно на N1, N2, …, Nk равных частей. Тогда погрешность интегрирования (8) для единичной ячейки равна:
Суммируя это выражение по всем ячейкам, получим погрешность обобщённой формулы:
(9)т.е. формула имеет второй порядок точности. При этом, как и для одного измерения, можно применять метод Рунге–Ромберга, но при одном дополнительном ограничении: сетки по каждой переменной сгущаются в одинаковое число раз.
Обобщим формулу ячеек на более сложные области. Рассмотрим случай K=2. Легко сообразить, что для линейной функции
формула типа (5) будет точна в области произвольной формы, если под S подразумевать площадь области, а под –координаты центра тяжести, вычисляемые по обычным формулам: (10)Разумеется, практическую ценность это имеет только для областей простой формы, где площадь и центр тяжести легко определяется; например, для треугольника, правильного многоугольника, трапеции. Но это значит, что обобщённую формулу (6) можно применять к областям, ограниченным ломаной линией, ибо такую область всегда можно разбить на прямоугольники и треугольники.
Для области с произвольной границей формулу (6) применяют иным способом. Наложим на область сетку из K-мерных параллелепипедов (рис.3). Те ячейки сетки, все точки которых принадлежат области, назовём внутренними; если часть точек ячейки принадлежит области, а часть – нет, то назовём ячейку граничной. Объём внутренней ячейки равен произведению её сторон. Объёмом граничной ячейки будем считать объем той её части, которая попадает внутрь ; этот объём вычислим приближённо. Эти площади подставим в (6) и вычислим интеграл.Оценим погрешность формулы (6). В каждой внутренней ячейке ошибка составляет
по отношению к значению интеграла по данной ячейке. В каждой граничной ячейке относительная ошибка есть , ибо центр ячейки не совпадает с центром тяжести входящей в интеграл части. Но самих граничных ячеек примерно в раз меньше, чем внутренних. Поэтому при суммировании по ячейкам общая погрешность будет , если функция дважды непрерывно дифференцируема; это означает второй порядок точности.