Подставив полученное выражение в формулу (21), получим
. (26)Преобразуем выражение (25) в кубическое уравнение
. (27)Найдём корни уравнения (27), используя решение Кардано [35], подстановкой
, (28)где
– корень уравнения.Уравнение (27) приводим к неполному виду
, (29)где
, – коэффициенты уравнения, , (30) . (31)Корни
, и уравнения (29) находятся из выражений , (32) , (33)где
; .Для решения данной задачи следует брать только действительные значения корней, получаемые при
³ 0.Если
< 0, то применяется тригонометрическое решение. В этом случае , ,где
.Для определения теоретического коэффициента расхода центробежной форсунки используется блок-схема последовательности расчёта, представленная на рисунке 2.
Рисунок 2 – Блок-схема программы расчёта параметров форсунки
Используя исходные данные, в виде значений геометрических параметров форсунки и определив коэффициенты
, , и , находят коэффициент заполнения отверстия сопла форсунки жидкостью и далее по уравнению (26) определяют коэффициент расхода жидкости через форсунку.3 ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ И МЕТОДИКИ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ
На рисунке 3 показана схема установки для экспериментального определения коэффициента расхода центробежной форсунки и параметров процесса распыления. Установка состоит из форсунки 1, ротаметра 2, вентиля 3, центробежного насоса 4, ёмкости 5, манометра 6, экрана 7 и осветителя 8.
1 – форсунка; 2 – ротаметр; 3 – вентиль; 4 – насос; 5 – ёмкость;
6 – манометр; 7 – экран; 8 – осветитель
Рисунок 3 – Схема экспериментальной установки
Вода или другая используемая для исследований жидкость насосом 4 подаётся в центробежную форсунку 1, из которой жидкость вытекает в виде факела, состоящего из капель. Капли падают в ёмкость 5, где объединяются в сплошную фазу, которая может вновь подаваться насосом в форсунку. Вентиль 3 предназначен для изменения расхода жидкости. Расход жидкости, поступающей в форсунку, контролируется ротаметром 2. Давление в трубопроводе определяется манометром 6. Осветитель 8 предназначен для проецирования факела жидкости на экран 7 и определения угла распыла форсунки. Осветитель 8 обеспечивает теневое проецирование различных предметов и явлений. Методом теневого проецирования возможно проводить демонстрацию волн на воде, вращательных и колебательных движений, конвекции воздуха и т. д. Кроме того, осветитель можно использовать для подсветки рассматриваемых микрообъектов при работе с микроскопом.
Осветитель состоит из полого корпуса прямоугольного сечения, в передней части которого расположена оправа с линзой. Внутри корпуса расположен стержень с патроном и лампочкой на одном конце и ограничительной втулкой на другом. После юстировки стержень фиксируется в нужном положении винтом. Скоба со стержнем служит для закрепления осветителя в нужном положении и устанавливается в специальном отверстии на корпусе блока питания или отдельно в крестообразной муфте на штативе.
Блок питания содержит пластмассовый корпус, внутри которого на металлическом основании установлены понижающий трансформатор, втулка для стержня с осветителем. Понижающий трансформатор включается в осветительную сеть переменного тока 220 В и предназначен для питания лампочки А6-21. На задней стенке корпуса блока питания размещены два универсальных зажима для подключения осветителя к вторичной обмотке трансформатора и зажимной винт, фиксирующий положение стержня осветителя по высоте, а на передней стенке установлен кнопочный выключатель.
Диафрагмы предназначены для ограничения светового потока осветителя, для чего их помещают в специальный паз в оправе. Подобное ограничение светового потока особенно необходимо при освещении микрообъектов, находящихся на предметном столике микроскопа.
Каждая из трех диафрагм имеет соответственно одно отверстие диаметром 5, 10 и 15 мм. Кроме трех диафрагм с круглым отверстием, в набор входит диафрагма со щелью-стрелкой.
Светофильтр синего цвета, установленный в оправе осветителя, служит для монохроматического освещения предметного столика микроскопа. Светофильтр представляет собой стеклянную пластину размером 50 x 50 мм. Матовое стекло, так же как и светофильтр, устанавливается на пути светового потока осветителя и позволяет получить ровный рассеянный свет. Размеры матового стекла те же, что и светофильтра. Источник света – автомобильная лампа напряжением 6 В. Не являясь точечным источником света, лампа не позволяет качественно пользоваться диафрагмой со стреловидной щелью, в результате чего стрелка проецируется на экране двойным изображением.
Технические данные осветителя ОТП
Напряжение питания – переменное………………….220 В
Освещенность экрана в центре поля,
установленного на расстоянии 1 м не менее………..20 лк
Время непрерывной работы не более………….…….45 мин
Максимальный угол наклона в вертикальной
плоскости………………………………………………45°
Габаритные размеры осветителя не более……….…. 295 x 195 x 120 мм
Масса осветителя не более…………………….……...3,7 кг
На рисунке 4 представлена схема центробежной форсунки, используемой для исследований. Форсунка состоит из следующих деталей: гайки 1, сопла 2, втулки 3, корпуса 4 и прокладки 5. Внутри корпуса 4 расположено сопло 2, закрытое с одной стороны втулкой 3 и зафиксированное гайкой 1. Между выступом сопла 2 и корпусом 4 устанавливается прокладка, препятствующая проходу жидкой среды в резьбовое соединение между гайкой и корпусом. Сопло 2 содержит осевой канал для вывода жидкости и тангенциальные каналы для ввода жидкости, а также резьбовое отверстие для ввинчивания втулки 3. Сопла сменные, изготовлены с различными диаметрами каналов.
Работа на экспериментальной установке проводится по следующей методике. Ёмкость 5 (см. рисунок 3) заполняется жидкостью в
заданном количестве, включается насос 4, открывается вентиль 3 и устанавливается некоторый объёмный расход
1 – гайка; 2 – сопло; 3 – втулка; 4 – корпус; 5 – прокладка
Рисунок 4 – Схема экспериментальной центробежной форсунки
Перед включением осветителя 8 в сеть необходимо установить осветитель в скобе стержня, вставить его в отверстие на корпусе блока питания и закрепить винтом на требуемой высоте. Провода осветителя подключаются к универсальным зажимам блока питания, на которые подается напряжение с вторичной обмотки трансформатора, а вилка шнура блока питания включается в сеть. Юстировка лампы осуществляется перемещением стержня вдоль оси. Положение лампы определяется необходимыми размерами светового пятна осветителя на экране. При движении источника света в сторону оправы с линзой диаметр светового пятна будет увеличиваться.