Наряду с работами-сочинениями нередко можно видеть и такие работы, в которых сплошным текстом идут выкладки без выделения каких-либо этапов решения, вообще не содержащих никаких пояснений. В связи со сказанным отметим, что очень нечасто встречаются работы, в которых используются такие слова, раскрывающие логику рассуждений, как «следовательно», «поэтому», «значит» и пр.
Весьма типичным недостатком в записи решения является неверное употребление математической терминологии и символики. Так, вместо словосочетания «найдем корни квадратного трехчлена» можно увидеть выражение «решим квадратный трехчлен»; вместо слов «решим неравенство», ученики часто пишут «решим уравнение». Можно встретить такое ошибочное выражение, как «построим график прямой».
Серьезное непонимание существа дела проявляется в неуместном употреблении логических союзов «И» и «ИЛИ». В сознании учащихся наблюдается путаница между употреблением этих союзов как логических связок и как частей речи русского языка. Например, результат решения квадратного уравнения
записывают так: или (или употребляют в этой записи знак совокупности). В то время как задача состоит в нахождении множества корней уравнения, в соответствии с чем требуется перечислить элементы этого множества (а не записывать дизъюнкцию высказываний), что может быть сделано разными способами, например: , ; 2 и 3; 2; 3.Сплошь и рядом учащиеся путаются в обозначениях совокупности (квадратная скобка) и системы (фигурная скобка). В экзаменационных работах 2008 года значительное число успевающих школьников вместо символической записи, обозначающей совокупность двух систем, использовали запись, означающую систему двух совокупностей. О нецелесообразности употребления термина «совокупность» и соответствующего обозначения следовало бы поговорить особо, но если уж их использовать, то в соответствии со смыслом, который в них вкладывается.
Обращает на себя внимание следующий факт: учащиеся, выполняющие задания второй части работы, т.е. относящиеся к хорошо успевающим школьникам, не вооружены элементарными техническими навыками, своего рода азбукой преобразований, которая облегчает выполнение выкладок, позволяет избежать случайных ошибок. Приведем типичный пример. В одном из заданий экзаменационной работы для нахождения области определения выражения нужно было решать квадратное неравенство
. Выяснилось, что многие школьники не знают о том, что, следуя мудрому правилу «плюс лучше минуса», это неравенство целесообразно сразу же заменить равносильным . Некоторые из них так и сохраняют до конца отрицательный коэффициент у старшего члена квадратного трехчлена и в результате допускают вычислительные ошибки при вычислении его корней. Другие меняют минус на плюс, но лишь после того, как записывают уравнение , и затем они ошибаются при нахождении множества решений неравенства, забывая о том, что в неравенстве коэффициент при был отрицательный. Подчеркнем, что такого рода недостаток носит массовый характер.Вообще, решение квадратного неравенства для многих школьников представляет поистине непреодолимую трудность. И причина, скорее всего, кроется в методических подходах, широко используемых в практике преподавания. Дело в том, что учителя математики дополняют рассмотрение алгоритма решения квадратных неравенств, в основе которого лежат графические представления, весьма трудным для девятиклассников вопросом о решении неравенств методом интервалов (хотя он и не предусмотрен стандартом по математике основной школы). Из-за объективной сложности каждого из этих вопросов, большого объема материала, неизбежной методической «скороговорки» в результате недостатка учебного времени ни один из них не усваивается сколько-нибудь удовлетворительно. Метод интервалов разрушает в сознании учащихся еще недостаточно освоенный алгоритм. В результате учащиеся
не могут решить такие квадратные неравенства, как , .Чтобы решить упомянутое выше квадратное неравенство
, многие школьники посчитали необходимым разложить левую часть неравенства на множители (тогда как достаточно было найти корни трехчлена и «прочитать» ответ по схематическому графику). Заметим, что это неравенство являлось частью решения комплексной задачи на нахождение области определения выражения, которая свелась к решению системы . После того, как учащийся изображал на координатной оси корни трехчлена, а между ними «светлую» точку , получалось четыре промежутка. И многие, спровоцированные неверными ассоциациями, последовательно проставляли над этими промежутками знаки +, –, +, – или –, +, –, +.Остановимся еще на одном распространенном недочете 2008 г. и прошлых лет. В одной из работ было предложено решить весьма непростую систему двух уравнений с двумя переменными, которой удовлетворяет три пары чисел. Главной проблемой для многих, дошедших практически до конца решения, явилась запись ответа. Они либо не объединяли найденные значения в пары, либо объединяли, путая порядок. Это еще раз свидетельствует об отсутствии понимания существа дела: все преобразования выполнены, а логически решение не завершено.
Анализ выполнения заданий выпускниками с различным уровнем подготовки
По результатам одной из территорий был проведен анализ особенностей выполнения заданий экзаменационной работы группами выпускников, получивших по пятибалльной шкале отметку «2», «3», «4», «5».
Учащиеся, получившие отметку «5», в целом продемонстрировали очень хорошее владение материалом на уровне базовой подготовки. Результаты выполнения заданий первой части экзаменационной работы находятся в диапазоне от 88% до 97%. Исключение составляют два задания, имеющие практико-ориентированную направленность, одно из которых предполагало проведение вычислений по формуле с переводом одних единиц измерения в другие, а второе – процентные расчеты с выбором нужных данных из условия задачи. Процент выполнения этих заданий равен в среднем 55% и 77% соответственно. Эти задания вызвали наибольшие затруднения и во всех остальных группах.
Процент выполнения заданий повышенного и высокого уровней (вторая часть экзаменационной работы), показанные этой группой учащихся, находится в диапазоне от 85% (задание № 17) до 20% (задание № 21). Учащиеся, получившие отметку «4», продемонстрировали стабильное владение материалом на уровне базовой подготовки. Результаты выполнения 13-ти заданий первой части экзаменационной работы находятся в этой группе в диапазоне от 72% до 95%. Значительно более низкие результаты здесь показаны по тем же двум заданиям, что и в предыдущей группе (39% и 68% соответственно).
Результаты выполнения первых четырех заданий второй части работы (диапазон по различным регионам) этой группой учащихся находятся в диапазоне от 55% (задание № 17) до 10% (задание № 20). С заданием № 21 справилось в среднем около 1% четверочников.
Как и в предыдущие годы, немногим более половины выпускников данной группы (18% от общего числа учащихся) имеют рейтинг 8-10 баллов. Это «четверка», полученная на минимальной границе выставления «четверки» и характеризующая, в основном, подготовку тех учащихся, которые выполнили 12-16 заданий первой части и одно несложное из второй. В то же время, можно выделить достаточно большую группу сильных «четверочников»; их рейтинг составил 13-15 баллов, уровень их подготовки можно считать близким к «пятерке». У них в полной мере сформированы базовые знания и умения, и они способны находить пути решения задач в ситуациях, отличающихся от стандартных. Это примерно треть получивших отметку «4» (9% от общего числа учащихся).
Учащиеся, получившие отметку «3», продемонстрировали нестабильное владение материалом на уровне базовой подготовки. Результаты выполнения основной части заданий в этой группе находятся в более широком диапазоне: от 57% до 76%. Следует отметить и довольно низкую верхнюю границу диапазона, и серьезный отрыв результатов данной группы от предыдущей. Кроме того, для учащихся этой группы имеет значение форма ответа: задания с кратким ответом они выполняют приблизительно на 15% хуже заданий с выбором ответа.
Два задания, оказавшиеся трудными для учащихся двух предыдущих групп, выполнили соответственно 40% и 52% троечников. Но хуже всего учащихся данной группы справились с заданием на чтение реального графика (его выполнили около 37% экзаменуемых, получивших отметку «3»).
Что касается второй части работы, то учащиеся этой группы имеют реальный шанс справиться лишь с заданием №17, выполняют его от 11% до 21% «троечников». Результат выполнения всех прочих заданий составляет около 1%.
Учащихся, набравших 6 или 7 баллов, можно отнести к категории «твердых троечников»: они выполняют больше половины заданий первой части работы, а некоторые из них и первое задание второй части. Таких учащихся около 19% от общего числа сдававших экзамен.