Смекни!
smekni.com

Методическое письмо Об использовании результатов государственной (итоговой) аттестации выпускников основной школы в новой форме в 2008 году в преподавании алгебры в общеобразовательных учреждениях (стр. 6 из 9)

Учащиеся, получившие отметку «2», не продемонстрировали владение материалом на уровне базовой подготовки. Результаты выполнения заданий в этой группе находятся в широком диапазоне: от 8% до 62%. Наиболее стабильные результаты – более 40% - показаны по заданиям, относящимся к познавательной категории «алгоритмы»: преобразование выражений, действия со степенями, формулы сокращенного умножения, представление чисел точками на координатной прямой, преобразование неравенств.

На основе анализа приведенных данных можно сделать некоторые выводы. Задачей первой части работы является проверка владения материалом курса на базовом уровне, но при этом на основе результатов выполнения заданий этой части уже можно дифференцировать учащихся по уровню подготовки. В меньшей степени это относится к хорошо успевающим школьникам. Тем не менее, в среднем диапазон процентов верных ответов у четверочников, отличается от соответствующего диапазона пятерочников на 5%-10%. Более тонко эти две группы учащихся дифференцируются второй частью работы. А вот разница в результатах следующих групп уже более ощутима: по отметкам «3» и «4» диапазоны различаются на 10%-20%, по отметкам «2» и «3» - на 30%-40%. Последний факт свидетельствует о том, что «уровень незнания» действительно расположен очень низко.

Сравнивая результаты выполнения выделенными группами отдельных заданий второй части работы, можно отметить следующее. Результаты выполнения уже первого, наиболее простого, задания второй части существенно различаются: группа «четверочников» выполнила его на 20%-40% хуже группы «пятерочников». Напомним, что отметка «4» выставляется и за практически полное выполнение первой части работы, правда, процент таких учащихся не высок – не более 3. Это нижняя граница четверки. При подготовке к экзамену целесообразно нацеливать определенную часть учащихся на безошибочное выполнение первой части, правильно расставляя акценты и учитывая их реальные возможности. Например, больше обращать внимание на понятийную сторону, конечно, не в ущерб алгоритмической.

Это же соображение можно отнести и к группе троечников. Особенность их подготовки состоит в том, что они освоили на базовом уровне алгоритмические умения, но имеют существенные пробелы в понятийной стороне. Возможно, отсюда и проблемы с категорией «решение задач», где нет четкого алгоритма выполнения, а известны лишь общие соображения, из которых учащимся должно быть самостоятельно «собрано» решение несложной задачи.

Результаты выполнения заданий №18-21 экзаменационной работы группой троечников находятся практически на нулевом уровне. Это лишний раз указывает на необходимость дифференцированного подхода к обучению и, в частности, при подготовке к экзамену: учителю необходимо ставить перед учащимся ту задачу, которую он может реализовать.

Перспективы включения в экзамен заданий вероятностно-статистической линии

В 2003 году было опубликовано письмо Минобразования России «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы» (от 23 сентября 2003 г. №03-93ин/13-03). В нем было рекомендовано начинать изучать этот материал в 5 и 7 классах (отметим, что он включен в стандарт 2004 года, и в настоящее время есть во всех учебниках, имеющих гриф Министерства образования и науки РФ). В этом году были сделаны первые шаги в решении вопроса включения заданий вероятностно-статистической линии в итоговую аттестацию по алгебре. На данном этапе было решено осуществлять проверку усвоения материала этой линии только на базовом уровне.

Письменный экзамен по алгебре в 9-х классах по новой форме с включением в экзаменационную работу заданий вероятностно-статистической линии проводился в 9-ти классах Саратовской области. Суммарно экзамен в режиме эксперимента сдавало 199 учащихся из трех районов Саратовской области (Энгельсский район, ЗАТО Светлый, Кировский район г. Саратова).

Для апробации содержания вероятностно-статистической линии курса математики основной школы был разработан специальный набор заданий базового уровня, относящихся к трем составляющим этой линии: элементам теории вероятностей, комбинаторике и статистике.

В первую часть экзаменационной работы дополнительно были включены два задания (задания А и Б). Таким образом, в режиме апробации первая часть экзаменационной работы состояла из 18 заданий. Задание А относилось к разделу статистики, задание Б - к разделу комбинаторики. Ниже приводится один из вариантов.

Задание А. Записан рост (в сантиметрах) пяти учащихся: 158, 166, 134, 130, 132. На сколько отличается средний рост этих учащихся (среднее арифметическое) от медианы?

Ответ: __________________

Задание Б. Сколько всего трехзначных чисел можно записать, используя цифры 0, 3, 7 и 9?

1) 18 2) 24 3) 48 4) 64

Дополнительные задания распечатывались на отдельном листе для каждого ученика, принимающего участие в апробации. Это позволило осуществить независимую обработку результатов выполнения заданий 1-16 и указанных двух заданий экзаменационной работы. Задания А и Б учащийся выполнял на том же листе, на котором они были распечатаны: обводил верный с его точки зрения ответ в задании с выбором ответа, в задании с кратким ответом вписывал полученный результат в строку со словом «Ответ». Дополнительные задания сдавались учащимися одновременно с первой частью работы по истечении 90 мин, отведенных на выполнение первой части в связи с увеличением объема работы.

За выполнение дополнительных заданий, как и за каждое задание первой части работы, начислялось 0,5 балла. Таким образом, за выполнение первой части учащиеся могли получить до 9 баллов. Несмотря на увеличение количества заданий, и общего балла на 1, критерии оценивания и схема перевода общего балла в отметку сохранялись те же, что и в общем случае. Дополнительные задания проверялись экспертами предметной комиссии. Результаты их выполнения представлены в таблице 8.

Таблица 8

Задание Выполнили верно Выполнили неверно Не приступали
А 139 чел. (71%) 25 чел. (12%) 35 чел. (17%)
Б 128 чел. (64%) 66 чел. (33%) 5 чел. (3%)

Анализ результатов выполнения заданий показал типичные ошибки, которые допускались при выполнении задания А:

1) учащиеся не упорядочивали ряд значений роста, и брали за медиану значение, стоящее в середине данного ряда − 17 чел. (две трети тех, кто выполнил это задание неверно);

2) учащиеся допускали вычислительные ошибки при нахождении среднего арифметического − 8 чел. (третья часть тех, кто выполнил это задание неверно).

При выполнении задания Б типичными ошибками были следующие:

1) учащиеся считали трёхзначные числа без повторения цифр − 48 чел. (73% выполнивших это задание неверно);

2) учащиеся не учитывали того, что число не может начинаться с нуля − 12 чел. (18% выполнивших это задание неверно);

3) учащиеся допускали вычислительные ошибки − 6 чел. (9% выполнивших это задание неверно).

Наиболее распространенная из отмеченных ошибок, несомненно, является следствием той методики изучения этого вопроса, которой придерживаются многие школьные учителя, преподающие новый материал программы. Делая основной акцент на формулы комбинаторики (хотя они и не предусмотрены стандартом основной школы), они тем самым существенно уменьшают круг решаемых задач, ограничиваются рассмотрением так называемых вариантов «без повторения», что, по всей видимости, и проявилось в результатах выполнения данного задания.

Несмотря на то, что результат по заданию Б (комбинаторика) ниже, чем по заданию А (статистика), предпочтение учащиеся отдавали задаче по комбинаторике, процент приступивших к ее решению значительно больше, чем по задаче А.

В целом эксперимент показал принципиальную возможность включения заданий вероятностно-статистической линии курса математики основной школы в экзамен для проверки усвоения соответствующего материала на базовом уровне. Понятно, что такое включение можно осуществить разными способами – заменить одно или два задания в принятом в настоящее время общем плане работы или же включить в первую часть работы дополнительные задания. Результаты показали, что увеличение первой части экзаменационной работы за счет двух дополнительных заданий из нового содержательного блока вполне возможно, но, по всей видимости, требует отведения на выполнение первой части работы 90 минут. Однако экспериментальная работа в этом направлении должна быть продолжена. Это является ближайшей перспективой развития содержания и структуры экзаменационной работы по алгебре для проведения государственной (итоговой) аттестации за курс основной школы.

Некоторые рекомендации по подготовке к экзамену и совершенствованию учебного процесса

Представленный выше анализ результатов содержит достаточное количество прямых и косвенных рекомендаций, позволяющих увидеть слабые места в подготовке учащихся и наметить пути совершенствования учебного процесса, как в целом, так и при работе со школьниками, имеющими разный уровень подготовки и разные потребности в математике. В данном разделе остановимся на некоторых методических аспектах подготовки к экзамену, связанных с характером и спецификой заданий, включаемых в экзаменационные работы.

Принципиальной особенностью первой части экзаменационной работы является то, что для каждого из 16 заданий нужно указать только ответ, выбрав его из четырех предложенных или вписав в отведенное для этого место. Однако, хотя в экзаменационные бланки заносятся только ответы, включенные в работу задания необходимо выполнять в основном письменно, используя для этого черновик. Решение должно быть записано аккуратно и с достаточной степенью подробности. Это важно не потому, что черновик тоже сдается (он просматриваться не будет), а для того чтобы ученик не допускал досадных ошибок технического характера.