однако не могло быть сомнений, в том, что это два различных соединения.
Важно отметить, что живой организм по-разному реагирует на соединения, отличающиеся лишь своей вращательной способностью. В 1857 году Л. Пастер впервые установил, что плесневый грибок Penicillum glaucum потребляет d-винную кислоту, оставляя не тронутой левовращающую форму. Он высказал предположения о том, что физиологическая активность подобных изомеров зависит от расположения в пространстве атомов. Это открытие явилось началом целого ряда исследований, посвященных вопросу о связи между физиологической активностью и пространственной конфигурацией химических соединений. Можно привести ещё много примеров различного действия оптических изомеров на организм. Например, l-адреналин интенсивно повышает кровяное давление, а его d-изомер совершенно лишен такой способности. Природные l-аминокислоты безвкусные или горькие, а представители d-ряда сладкие. l-аскорбиновая кислота обладает антицинготными свойствами, тогда как её d-изомер неактивен. Неодинаковое отношение живого организма к оптическим антиподом несомненно связано с тем обстоятельством, что основные вещества, из которых построено всё живое, например белки, сами по себе являются ассиметричными.
А. М. Бутлеров писал: «Факты, необъясняемые существующими теориями, наиболее дороги для науки, от их разработки следует по преимуществу ожидать её развития в ближайшем будущем». Действительно, изучение случаев изомерии, казавшихся необъяснимыми, привело к возникновению стереохимии — учения о пространственном строении молекул, которое, в свою очередь, обогатило теорию строения новым содержанием. Основы стереохимической теории были заложены в 1874 г., когда два малоизвестных химика — голландец Вант-Гофф и француз Ле Бель — одновременно и независимо друг от друга опубликовали свои работы, в которых рассматривалось пространственное расположение атомов в молекулах органических соединений. Молодые ученые ( Вант-Гоффу было всего 22 года, а Ле Белю — 27) исходили из различных предпосылок, но пришли к одинаковым выводам. Эти выводы были настолько неожиданными, а фактов, на которые опирались авторы, было ещё так мало, что большинство химиков отнеслись к новой гипотезе с недоверием, считая её ни на чем не основанной фантазией. Так, Г. Кольбе встретил появление работы Вант-Гоффа следующим своеобразным «приветствием», поражающим своей резкостью и нетерпимостью: «Как видно, д-р Я. Г. Вант-Гофф, служащий Утрехтской ветеринарной школы, не находит никакого вкуса точному химическому исследованию. Он считает более удобным оседлать Пегаса (заимствованного очевидно в ветеринарной школе) и объявить в своей «Химии в пространстве» о том, как представляются ему, взобравшемуся благодаря смелому полету на химический Парнас, атомы расположенными во вселенной». Кольбе считал излишним подробно разбирать работу Вант-Гоффа, «так в ней игра фантазии совершенно лишена реальной основы и непонятна для трезвого исследователя». Однако прошло всего лишь 10 лет, и теория Вант-Гоффа и Ле Беля стала общепринятой, так как она блестяще подтверждалась фактами, которых с каждым годом накапливалось все больше и больше.
Как же можно себе представить расположение атомов в молекуле? Рассмотрим простейший насыщенный углеводород — метан. Все его свойства свидетельствуют о равноценности четырех С—Н связей. Естественно предположить, что и расположение в пространстве атомов водорода должно быть одинаковым. Каково же оно? Можно представить себе, что все атомы в молекуле метана лежат в одной плоскости и четыре равноценные связи С—Н образуют между собой прямые углы. Тогда атом углерода можно изобразить находящимся в центре квадрата, в четырех углах которого располагаются атомы водорода.
В таком предположении нет ничего противоестественного. Однако, как показывает опыт, у насыщенного атома углерода, плоское расположение заместителей невозможно. В самом деле, если бы атом углерода и четыре атома, связанные с ним, располагались в одной плоскости, то существовали бы два изомерных соединения состава CH2Cl2.
Чтобы убедиться, что подобные две плоские молекулы неодинаковы, попробуйте их совместить, т. е. наложить так, чтобы они совпадали всеми своими точками (атомами). Эта попытка окажется безрезультатной. Поскольку в действительности существует лишь одно вещество состава CH2Cl2, напрашивается вывод, что молекула этого соединения не является плоской. Напротив, вполне согласуется с опытом другое представление о молекулах метана и его производных, именно то, которое выдвинул Вант-Гофф. Он предположил, что заместители располагаются вокруг атома в пространстве и притом совершенно симметрично. Такую пространственную ориентацию легко себе представить, поместив четыре заместителя в вершины тетраэдра, в центре которого находится атом углерода. При подобном расположении атомов изомерия возможна лишь тогда, когда все четыре заместителя разные. Для этого случая можно построить только две модели, соответствующие двум изомерам, которые относятся как предмет к его зеркальному отражению и никаким образом не могут быть совмещены. Именно такого рода особенность характерна для строения известных ко времени создания стереохимической гипотезы оптических изомеров — в молекулах этих соединений имеются асимметрические атомы углерода, т. е. атомы связанные с четырьмя разными заместителями. Например, в молекуле винной кислоты два таких атома, они отмечены звездочками:
HOOC— C*H—C*H—COOHOH OH
Утверждение, что предмет не совпадает со своим зеркальным отражением, на первый взгляд может показаться странным. Ведь говорим же мы: «Точно как в зеркале!». Однако зеркало повторяет линии предмета своеобразно: то, что было правым, становится левым. Поэтому, если предмет не симметричен, если его правая сторона не совпадает с левой, а верхняя часть с нижней, он никогда не будет совпадать со своим изображением. Например, правая рука в зеркале кажется левой. Такие свойства характерны и для тетраэдрической модели четырехзамещенного метана с четырьмя различными заместителями. Если же принять, что в молекулах типа Cabcd, имеющих четыре различных заместителя при атоме углерода, все атомы лежат в одной плоскости, то должны были бы существовать три формы таких молекул и, следовательно, три изомерных соединения.
Однако, хорошо известно, что существуют лишь два изомера формулы Cabcd, или, как принято говорить, две конфигурации, условно называемые правой и левой. Этому факту удовлетворяет тетраэдрическое расположение атомов.
Тетраэдрическую модель атома углерода можно наглядно представить, изобразив заместители (атомы или радикалы) в виде шариков, соединенных проволочками с центральным шариком — атомом углерода. Углы между проволочками должны быть одинаковы и равны 109°28’. Подобные модели, называемые моделями Кекуле—Вант-Гоффа, давно уже используются при рассмотрении вопросов пространственного расположения атомов в молекулах органических соединений. В настоящее время широко применяются более компактные модели Дрейдинга, построенные из стержней и трубочек, длины которых пропорциональны длинам соответствующих связей 4 в этих моделях атомы не изображаются шариками, а предполагается, что центры их находятся в узлах (для многовалентных элементов, например углерода) или на концах трубочек (стержней для одновалентных, в частности водорода). Модели подобного типа нетрудно сделать самим из медной проволоки и пластиковых трубочек. Аналогичным образом могут быть построены модели разнообразных производных углеводородов, включающих гетероатомы.
Если построить модель какого-либо углеводорода с прямой цепью атомов углерода, то окажется, что эта цепь вовсе не прямая, а зигзагообразная, поскольку углы между углерод-углеродными связями равны не 180°, а 109°28’. При этом углеродная цепь может принимать самые разнообразные формы, например, вытянутую или свернутую. Поэтому понятию «прямая цепь» противопоставляется не «изогнутая», а «разветвленная цепь».
В случае циклических соединений имеются две возможности. Атомы углерода, входящие в цикл, могут либо лежать в одной плоскости, либо в разных. В трехчленном цикле атомы углерода заведомо лежат в одной плоскости, так как через три точки в любом случае можно провести плоскость. Почти плоскими являются молекулы с четырех - и пятичленными циклами, при этом имеется в виду, конечно, лишь атомы, составляющие скелет — цикл, заместители, естественно, лежат вне плоскости цикла. В шестичленных и высших циклах атомы расположены по-иному. Для циклогексана, например, возможны две формы — кресловиджная и ваннообразная. Сейчас точно известно, что циклогексан и многие его производные существуют преимущественно в форме кресла.
Более верное представление о форме молекул можно получить, рассматривая так называемые модели Стюарта, построенные с учетом углов между направлениями связей (валентных углов), межатомных расстояний и размеров атомов. Прежде чем перейти к описанию таких моделей, попытаемся уяснить себе, что понимается под размером атома. Атом состоит из положительно заряженного ядра, окруженного отрицательно заряженными электронами. Если сближать два атома, то на некотором расстоянии между ними начнет появляться взаимное отталкивание. Если все же преодолеть это отталкивание каким-либо внешним воздействием, например, увеличив кинетическую энергию атомов простым повышением температуры, то произойдет взаимное перекрывание электронных облаков. Размер атома может быть определен по минимальному расстоянию, на которое могут сблизиться два атома без образования связи между ними. Такому расстоянию соответствует равновесие сил отталкивания и притяжения, действующих между двумя атомами. Если для двух одинаковых атомов, например атомов хлора, такое равновесное расстояние между их атомами равно d, то такие атомы можно представить в виде шаров с радиусами rэфф. = d/2. Величину rэфф. называют эффективным радиусом или радиусом действия. Расстояние между двумя атомами, соединенными химической связью, как я уже говорила, будет меньше, чем между несвязными атомами, иными словами, сферы двух атомов взаимно перекрываются. Половина расстояния между двумя одинаковыми химически связанными атомами называется ковалентным радиусом (rков.). Ковалентные радиусы постоянные в разных соединениях, которые может образовывать данный химический элемент (имеется в виду, конечно, одинаковые валентные состояния элемента). Таким образом, зная величины rков. для различных атомов, можно путем их сложения получить значения межатомных расстояний для любой пары связанных атомов.