Смекни!
smekni.com

«Явления изомерии в органической и неорганической химии. Зависимость свойств веществ от их строения» (стр. 3 из 6)

Г. Стюарт в 1934 году предложил изготовлять модели атомов из шаров, радиус которых пропорционален rэфф.. Чтобы отразить взаимное проникновение электронных оболочек образовании связи, с шаров срезают сегменты так, что расстояние от центра шара до среза пропорционально rков.. Если теперь соединить два шара по плоскостям среза, то расстояние между центрами шаров будет пропорционально межатомному расстоянию. Для многовалентных атомов делается не один, а два или более срезов под углами, равными валентным углам, характерным данного типа атомов. Эти углы измеряются между перпендикулярами, опущенными из центра шара на плоскости среза. Естественно, угол между плоскостями не валентному, а дополнительному углу (180˚ — φ, где φ — валентный угол). Размеры атомов чрезвычайно малы. Чтобы сделать модели удобными и наглядными, все линейные размеры в них увеличивают по сравнению с размерами атомов в 150 млн. раз (1 А соответствует на модели 1,5 см).

Модели по Стюарту не представляют собой, конечно, точных увеличенных копий реальных атомов и молекул, но достаточно верно отражают картину заполнения пространства в молекуле и различные формы, которые она может принимать. Например, молекула насыщенного углеводорода триаконтана (С30Н62) может принять вид длинной цепочки, но это далеко не единственно возможная форма, или конформация, молекулы триаконтана. При тепловом движении из-за беспорядочных столкновений сохранения вытянутой конформации маловероятно, и молекулы принимают свернутые конформации.

В рассмотренных случаях атомы имеют более или менее сложное расположение в пространстве, но бывает и молекулы с очень простым расположением атомов, например линейные молекулы ацетилена. В бензоле все углерод-углеродные связи одинаковы, и молекула его имеет форму правильного шестиугольника. Плоскими являются также молекулы этилена и его замещенных. Такое расположение в случае двузамещенных этиленов приводит к возможности существования двух изомеров особого типа, молекулы которых имеют одинаковую последовательность связей, но различную конфигурацию. Подобные изомеры действительно были обнаружены и получили названия геометрических изомеров. Это вполне устойчивые соединения, отличающиеся по физическим и химическим свойствам .

Классическим примером геометрических изомеров являются 1,2-этилендикарбоновые кислоты — фумаровая и малеиновая. В первой из них две карбоксильные группы, расположенные по разные стороны двойной связи С=С (транс-конфигурация), во второй по одну сторону (цис- конфигурация).

,

фумаровая кислота малеиновая кислота малеиновый ангидрид

Наиболее яркое различие в химических свойствах, позволяющее к тому же установить конфигурацию каждой из кислот, проявляется в способности к отщеплению воды. В отличие от фумаровой кислоты малеиновая легко дегидрируется, превращаясь в циклический малеиновый ангедрид.

Геометрическая изометрия возможна не только для этиленовых, но и для насыщенных циклических соединений. Действительно, если представить цикл в виде плоскости и принять во внимание, что атомы водорода или радикалы не лежат в той же плоскости, то можно предвидеть для двузамещенного циклического соединения возможность существования двух изомеров с расположением радикалов по одну сторону плоскости (цис-изомер) и по разные стороны (транс-изомер). В качестве примера геометрических изомеров можно привести молекулы цис- и транс-1,3-дихлорциклопентанов.

Мы познакомились с двумя типами пространственной изомерии: оптической (зеркальной) и геометрической. Ограничивается ли ими все многообразие способов пространственного расположения молекул? Не могут ли, например, существовать зеркальные изомеры без асимметрических атомов, то есть атомов соединённых четырьмя различными заместителями? Оказывается, что такие изомеры действительно существуют и сейчас известно немало примеров соединений без асимметрических атомов, не совпадающих со своим зеркальным отражением.

Может возникнуть и такой вопрос: не существуют ли геометрические изомеры и в случае насыщенных соединений жирного ряда, в которых атомы связаны простыми связями, например для 1,2-дихлорэтана? Иными словами, не может ли поворот вокруг простой связи каким-то образом фиксироваться так, чтобы получающиеся при этом различные конформации молекулы не превращались одна в другую? Я еще раньше косвенно ответила на этот вопрос отрицательно, подчеркивая, что вытянутые и свернутые формы углеводородной молекулы, а также формы «кресла» и «ванны» в случае циклогексана являются различными формами одной и той же молекулы. Действительно, изомеры рассматриваемого типа для насыщенных соединений никогда не были выделены. До недавнего времени это объясняли возможностью непрерывного свободного, то есть не требующего затраты энергии, вращения вокруг простой связи; для дихлорэтана это связь, соединяющая атомы углерода. Такое вращение должно происходить с огромной скоростью — 1 оборот за 10 -10 сек. Однако детальное исследование с применением современных физических методов показало, что вполне свободного вращения не существует даже в простейшей молекуле этана. При повороте одной метильной группы относительно другой вокруг простой С—С связи можно различить два крайних положения. В первом из них атомы водорода одной метильной группы находятся против атомов водорода другой метильной группы. Во втором — результат поворота одной метильной группы относительно другой на 60˚ атомы водорода становятся против промежутков между водородными атомами другой СН3-группы. Оказалось, что поворот из положения б в положение а требует затраты энергии (правда небольшой, порядка 3 калл/моль). Это объясняется тем, что форма а богаче энергией (или, как говорят, энергетически менее выгодна) по сравнению с конформацией б из-за более сильного взаимного отталкивания водородных атомов. Поворот из положения а в энергетически более выгодное положение б идет с выделением энергии. В связи с этим внутреннее вращение вокруг простой связи не может быть равномерным — энергетически не выгодная форма быстро превращается в более выгодную форму, обратное же превращение идет медленнее. Таким образом, среди бесчисленного множества форм молекулы этана чаще встречается повернутая конформация б, чем заслоненная а. Легко сообразить, что в случае дихлорэтана CH2Cl—CH2Cl конформация а будет еще менее выгодной, так как между объемистыми атомами хлора с большей электронной оболочкой силы отталкивания должны быть больше, чем между водородными атомами. Однако для дихлорэтана, как и для других простых производных этана, внутреннее вращение остается возможным, хотя оно как видно из сказанного, заторможено из-за взаимодействия противостоящих атомов.

В более сложных случаях, например в молекулах многих белков, повороты вокруг простых связей могут быть «закреплены» с помощью водородных связей. В результате молекулы таких белков или, по крайней мере, отдельные участки полипептидной цепи определенным, часто весьма причудливым образом расположены в пространстве относительно друг друга, что обеспечивается благодаря взаимодействию функциональных групп, входящих в аминокислотные остатки. Такая пространственная ориентация, или «третичная структура», известна в настоящее время для некоторых белков, например миоглобина. Это один из сравнительно «простых» белков: его молекула построена из 153 аминокислотных остатков (2500 атомов). Более сложные белки состоят из нескольких полипептидных цепей. Для таких белков рассматривают еще «четвертичную структуру», которая отражает взаимное расположение различных полипептидных цепей и определяет многие их важнейшие свойства. Если учесть еще, что в «первичную структуру» белка, то есть последовательность аминокислотных остатков, входят аминокислоты, имеющие определенную конфигурацию («природную конфигурацию»), станет ясно то решающее значение, которое имеет пространственное расположение атомов среди причин, обуславливающих совершенно исключительное разнообразие свойств белковых молекул. Пространственное расположение атомов существенным образом влияет на химические и биологические свойства углеродов, играющих как таковые или в виде фрагментов структуры нуклеиновых кислот важнейшую биологическую роль.