Смекни!
smekni.com

«Явления изомерии в органической и неорганической химии. Зависимость свойств веществ от их строения» (стр. 1 из 6)

МОУ Средняя общеобразовательная школа № 20

РЕФЕРАТ

ПО ХИМИИ

на тему: «Явления изомерии в органической и неорганической химии. Зависимость свойств веществ от их строения»

Исполнитель: Данилова Дарья 11 «А»

Руководитель: Г. А. Туманова

Директор МОУ СОШ № 20: Е.И.Ермолаева

г. Орехово-Зуево

2005 год

Содержание

Введение 3

1.Теория А. М. Бутлерова_ 4

2.Открытие явления изомерии_ 6

3.Типы изомерных отношений в органической и неорганической химии 15

4.Изомерия в органической химии_ 21

Заключение_______________________________________________23

Использованная литература_ 24


Введение

Можно ли, не рискуя ошибиться, назвать такую область окружающего нас мира, в которой нельзя было бы обнаружить органические вещества? Сделать это очень трудно: органические вещества имеются всюду — в воде рек и морей, в песках безводной пустыни, в недрах земли, в воздухе и, вероятно, даже в бесконечном космосе, например, в виде простейших углеводородов. Но когда мы задумываемся над значением органических соединений, поражает не столько широта их распространения, сколько многообразие и те, поистине неисчерпаемые возможности, которыми располагает природа и человек для получения новых веществ.

Что же лежит в основе этого многообразия? Прежде всего, способность атомов углерода связываться друг с другом и с атомами других элементов, например кислорода, серы, азота, фосфора, в цепи различной длины, образующие «скелет» молекул — циклических и нециклических. Другая причина лежит в явлении изомерии. Изменение последовательности соединения атомов в молекулах, состоящих только из углерода и водорода, приводит к новым веществам, число которых очень быстро растет с увеличение числа атомов.

Конечно, человеку удалось обнаружить в природе или синтезировать в лаборатории лишь ничтожную долю подобных изомерных углеводородов. Оно и понятно. Уже число изомеров, соответствующих составу С25Н52, раз в десять больше числа изученных в настоящее время органических веществ. А ведь органическая химия как наука существует более 100 лет. Возможности для изомерии, как легко понять, возрастают с усложнением состава молекулы, например, при введении в молекулу углеводорода других элементов. Например, при замене в углеводородной молекуле на хлор лишь одного атома водорода возможность изомерии появляется уже в случае производного пропана:

CH3—CH2—CH2Cl и CH3—CHCl—CH3. Для дихлоропроизводных углеводородов изомеры существуют, начиная уже с дихлорэтана: CH2Cl—CH2Cl и CH3—CHCl2.

Исчерпывается ли возможностью существования изомеров, отличающихся порядком сцепления атомов, всё многообразие, весь мир органических веществ? Мы сможем ответить на этот вопрос, обратившись к истории возникновения пространственных представлений в рамках теории химического строения органических соединений.

1.Теория А. М. Бутлерова

Первое публичное выступление А. М. Бутлерова по теоретическим вопросам органической химии относится к концу 50-х годов: это его доклад на заседании Парижского химического общества 17 февраля 1858 года. В нем говорится, что за радикалы следует считать не только органические группы, но и группировки типа ОН, NH2, то есть характерные для различных классов органических веществ сочетания атомов, которые впоследствии получили название функциональных групп. В этом же докладе А. М. Бутлеров впервые употребил и сам термин «структура», относя к однородному типу молекулярной структуры метан, хлористый метил, хлористый метилен, хлороформ, четыреххлористый углерод, метиловый спирт.

В более развитой форме идея химического строения была изложена А. М. Бутлеровым три года спустя в докладе «О химическом строении веществ», с которым он выступил на съезде естествоиспытателей в Шпейере. В этом докладе, прежде всего, говорилось, что теоретическая сторона химии не отвечает фактическому развитию, отмечалась в частности, недостаточность теории типов. А. М. Бутлеров был при этом далек от огульного отрицания ее; он справедливо указывал на то, что теория типов имеет и важные заслуги: благодаря ей вошли в науку понятия об атоме, частице (молекуле), эквиваленте, эквивалентных и молекулярных весах; благодаря этой теории химики научились везде на первом месте ставить факты.

В этом докладе он дал и свое четкое определение химического строения: «Я называю химическим строением распределение действия этой силы (сродства), вследствие которой химические атомы, косвенно или непосредственно влияя друг на друга, соединяются в химическую частицу». Говоря о химическом строении, А. М. Бутлеров считал необходимым четко разъяснить, что он имеет в виду «химическое взаимодействие атомов», оставляя пока открытым вопрос, прилегаю ли друг к другу атомы, химически непосредственно действующие друг на друга. Последующие развитие науки показало, соответствие между химическим строением и пространственным расположением существует, но во времена А. М. Бутлерова наука ещё не давала материала для решения этого вопроса.

Пользуясь понятием химического строения, А. М. Бутлеров дал в докладе известную классическую формулировку: «Химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением». Далее в докладе говорится о путях, которые могут применяться для изучения химического строения. О последнем можно судить прежде всего на основании способов синтеза вещества, причем наиболее надежные заключения могут быть сделаны при изучении синтезов, «которые совершаются при температуре мало возвышенной, и вообще при условиях, где можно следить за ходом постепенного усложнения химической частицы». Реакции разложения — преимущественно тоже протекающие в мягких условиях — также дают возможность сделать заключения о химическом строении, то есть полагать, что «остатки (радикалы) находились готовыми в разложившейся частице». Вместе с тем А. М. Бутлеров предвидел, что не все реакции пригодны для определения строения: существуют среди них и такие, при которых «изменяется химическая роль некоторых паев, а значит, и строение». В переводе на наш современный язык это реакции, сопровождающиеся изомеризацией скелета или переносом реакционного центра.

Построенная на базе химического строения рациональная формула, подчеркивал А. М, Бутлеров, будет однозначной: «Для каждого тела возможна будет, в этом смысле, лишь одна рациональная формула, и когда сделаются известными общие законы зависимости химических свойств тел от химического строения, то подобная формула будет выражением всех этих свойств. Типические формулы в их нынешнем значении должны бы тогда выйти из употребления… Дело в том, что эти формулы тесны для настоящего состояния науки!»

2.Открытие явления изомерии

Эта теория, основные положения которой были сформулированы А. М. Бутлеровым в 1861 году, рассматривала строение органических соединений, прежде всего как последовательность связи атомов в молекуле. Вопрос о расположении атомов в пространстве в то время ещё не обсуждался. Это не было случайностью. Вплоть до начала ХХ столетия наука не располагала еще физическими методами доказательства реального существования атомов и тем более их пространственного расположения. Однако уже с 70-х годов ХІХ века в химии развивались представления о пространственном расположении атомов в молекулах, которые значительно позднее были блестяще подтверждены физическими исследованиями.

Появление пространственных представлений в органической химии было связано с тем, что теория строения в её первоначальном виде не могла объяснить некоторых случаев изометрии. Речь идет об оптических изомерах — соединениях, строение которых выражалось одной и той же формулой, причем все химические свойства таких соединений полностью совпадали. Они не различались по физическим свойствам, кроме одного — способности вращать плоскость поляризованного света в ту или другую сторону. Обыкновенный свет, как известно, можно представить себе в виде волн, колеблющихся в различных плоскостях, перпендикулярных к направлению луча. Некоторые минералы, например исландский шпат (прозрачная разновидность карбоната кальция CaCO3), обладают способностью пропускать световые колебания, находящиеся только в определённой плоскости. Свет, прошедший через такой кристалл или специально приготовленную призму (поляризатор), называется плоско поляризованным. Как было установлено в начале XIX в., многие кристаллы, например кварц, а также некоторые органические вещества в жидком состоянии или в растворах способны вращать плоскость поляризованного света. Это явление, которое часто называют оптической активностью или оптическим вращением. Легко обнаружить, помещая на пути света, прошедшего через поляризатор и раствор исследуемого вещества, вторую призму-анализатор, пропускающую так же, как поляризатор, колебания, лежащие в одной плоскости. В таком случае угол, на который нужно повернуть анализатор, чтобы получить такую же интенсивность света, как при прохождении через растворитель в отсутствии оптически активного вещества, равен углу оптического вращения. Наиболее ярким примером оптически активного органического соединения может служить винная кислота, изученная в середине прошлого столетия Л. Пастером. Природная винная кислота вращает плоскость поляризации вправо и обозначается как d-винная кислота (от латинского dextro — правый). При длительном нагревании d-винная кислота утрачивает свою оптическую активность, превращаясь в смесь право- и левовращающей кислот. Из этой смеси Л. Пастеру удалось выделить левовращающую l-винную кислоту (от латинского laevo — левый). Обе кислоты имеют одинаковую структурную формулу: