Смекни!
smekni.com

Бодалев А. А. Столин В. В. Аванесов В. С. Общая психодиагностика (стр. 18 из 93)

Кривая распределения тестовых баллов отражает свойства пунк­тов, из которых составлен тест. Если кривая имеет правостороннюю асимметрию, то в тесте преобладают трудные задания; если кривая имеет левостороннюю асимметрию, значит, большинство пунктов в тесте - легкие (слабые) (рис. 2).

Рис. 2.Асимметрии распределения тестовых баллов

Тесты первого типа плохо дифференцируют испытуемых с низ­ким уровнем способностей: все эти испытуемые получают примерно одинаковый низкий балл. Тесты второго типа, наоборот, хуже диффе­ренцируют испытуемых с высоким уровнем способностей.

Если пункты обладают оптимальным уровнем трудности (силы), то кривая распределения зависит от того, насколько пункты однород­ны. Если пункты разнородны (исход по одному пункту не предопре­деляет исход по другому), то мы получаем тест в виде последователь­ности независимых испытаний Бернулли. Как известно из математи­ческой статистики, при достаточно большом количестве независимых испытаний с двумя разновероятными исходами кривая биномиально­го распределения (кривая суммарного балла) по закону больших чи­сел автоматически приближается к кривой нормального распределе­ния (центральная предельная теорема Муавра - Лапласа). Если тест содержит разнородные задания примерно равного уровня трудности (именно такие задания и подбираются для измерения интегральных свойств личности), то нормальность распределения суммарных бал­лов возникает автоматически - как артефакт самой процедуры под­счета суммарных баллов. При этом, конечно, форма кривой распре­деления баллов не позволяет говорить о реальной форме распределе­ния измеряемого свойства, каким оно является само по себе - в ши­рокой популяции испытуемых. Нормальность распределения есть артефакт, прямое следствие направленного отбора пунктов с задан­ными свойствами.

Если подбираются пункты, тесно положительно коррелирующие между собой (испытания не являются статистически независимыми), то в распределении баллов возникает отрицательный эксцесс (рис. 3,а), Максимальных значений отрицательный эксцесс достигает по мере возрастания вогнутости вершины распределения - до образования двух вершин -двух мод (с «провалом» между ними -рис. 3,6). Бимо­дальная конфигурация распределения баллов указывает на то, что вы­борка испытуемых разделилась на две категории (с плавными пере­ходами между ними): одни справились с большинством заданий (со­гласились с большинством «ли-вопросов»), другие - не справились.

Рис. 3. Отрицательные (а, б) положительный (в) эксцессы распределения тестовых баллов

Такая конфигурация распределения свидетельствует о том, что в ос­нове пунктов лежит какой-то один общий им всем признак, соответ­ствующий определенному свойству испытуемых: если у испытуемых есть это свойство (способность, умение, знание), то они справляются с большинством пунктов, если этого свойства нет - то не справляют­ся. В некоторых редких ситуациях пункты могут отрицательно корре­лировать друг с другом. В этом случае на кривой возникает положи­тельный эксцесс (рис. 3, в): вся масса эмпирических точек собирается вблизи среднего значения. Такое возможно в двух случаях: 1) когда ключ составлен неверно -объединены при подсчете отрицательно свя­занные признаки, которые обусловливают взаимоуничтожение бал­лов; 2) когда испытуемые применяют, разгадав направленность оп­росника, специальную тактику «медианного балла» - искусственно балансируют ответы «за» и «против» одного из полюсов измеряемого качества.

Итак, когда в качестве единственного эталона измерения психодиагностами рассматривается сам тест, то в качестве меры измеряе­мого свойства выступает положение балла на кривой распределения. Применяется процентильная шкала. В качестве универсальной меры, пригодной для разных (по своей качественной направленности и ко­личеству пунктов) тестов, используется «процентильная мера». Процентилъ — процент испытуемых из выборки стандартизации, кото­рые получили равный или более низкий балл, чем балл данного испы­туемого. Таким образом, в качестве источника данной меры высту­пает нормативная выборка (выборка стандартизации), на которой построено нормативное распределение тестовых баллов. Процентильные шкалы лежат в основе всех традиционных шкал, применяе­мых в тестологии (Т-очки MMPI, баллы IQ, стены 16 PF и др.).

Подчеркнем, что с точки зрения теории измерений, процентильные шкалы относятся к порядковым шкалам: они дают информацию о том, у кого из испытуемых сильнее выражено измеряемое свойство, но не позволяют говорить о том, во сколько раз сильнее. Для того чтобы строить на базе таких шкал количественный прогноз, нужно повысить уровень измерения (популярное изложение представлений о теории измерений см. в книге: Клигер С. А. и др., 1978). Переход к шкалам интервалов производят либо на базе эмпирического распределения, либо на базе произвольной модели теоретического распределения. В абсолютном большинстве случаев в роли такой теоретической модели ока­зывается модель нормального распределения (хотя в принципе может быть использована любая модель).

В целом кроме статистических, процентильных шкал следует от­личать нередко используемые в дифференциальной психометрике еще 2 вида шкал (и соответственно 2 вида тестовых норм). Это, во-пер­вых, то, что можно условно назвать «абсолютными тестовыми нор­мами» — в роли шкалы для вынесения диагноза выступает сама шкала «сырых» очков, во-вторых, «критериальные» тестовые нормы. При­менение таких норм можно считать оправданным в двух случаях: 1) когда сама тестовая «сырая» шкала имеет практический смысл (на­пример, студент, изучающий иностранный язык, должен знать как можно больше слов этого языка, и сырой показатель лексического теста имеет практический смысл); 2) когда сырой балл по тесту в ре­зультате эмпирических исследований связывается с заданной вероят­ностью успешности какой-либо практической деятельности (вероят­ность успеха «критериальной» деятельности, каковой для упомяну­того выше примера может быть синхронный перевод монолога в те­чение 30 минут).

Процентильная нормализация шкалы. Выше Показано, что нор­мальность распределения достигается искусственным подбором пун­ктов теста с заданными статистическими свойствами: Опишем еще ряд процедур, которые также широко используются для искусствен­ной нормализации.

1. Нормализация пунктов. Ключ для данного пункта корректиру­ется на базе нормальной модели. Если среди нормативной выборки с данным заданием справились только 16 % испытуемых, то данному пункту на интервальной шкале «трудности» (при условии априорно­го принятия нормальной модели с параметрами М = 0 и а = 1) соот­ветствует значение +1 (см. график в книге: Анастазй А., 1982, с. 181). Если справились 75 % испытуемых, то балл пункта на сигма-шкале равен-0,67. В результате суммирования по пунктам баллов, скоррек­тированных нормализацией, суммарные баллы лучше приближаются к нормальному распределению.

2. Нормализация распределения суммарных баллов (или интер­вальная нормализация). В этом случае по таблице нормального рас­пределения (нормального интеграла) производится переход от процентильной шкалы к сиг­ма-шкале: используется функция, обратная интег­ральной, - от ординаты производится переход к абсциссе нормального рас­пределения.

Рис. 4. Преобразование процентильной шкалы (по оси X) в нормализованную сигма-шкалу (по оси Y)

На рис. 4 дана условная графическая ил­люстрация этого перехода (кривая, обратная традици­онной S-образной интег­ральной кривой нормаль­ного распределения).

Приведем пример интервальной нормализации (табл. 3). Пусть строка X содержит сырые баллы (не нормализованные) по тесту, по­лученные простым подсчетом правильных ответов. В строке Р - час­тоты встречаемости сырых баллов в выборке из 62 испытуемых. В строке F - кумулятивные частоты:

=
. В строке F* - кумулятивные баллы:
. В строке PR - процентильные ранги:
. В строке σ даются нормализованные баллы, по­лученные из соответствующих процентильных рангов по таблицам, а -оценки часто называются в зарубежной литературе также z-оценками.

Таблица 3

X P F F* PR σ 3 2 2 1 1,6 -2,1 4 18 20 11 17,7 -0,9 5 13 33 26,5 42,7 -0,2 6 8 41 37 59,7 0,2 7 10 51 46 74,2 0,6 8 6 57 54 87,1 1,1 9 4 61 59 95,2 1.7 10 1 62 61.5 99.2 2.4 n=62 Σ=100 M=0 σ =1

Трудность, с которой сталкиваются начинающие при использова­нии интервальной нормализации, состоит в том, что обычные статис­тические таблицы не приспособлены для психометрики: нужно отыс­кивать значение процентильного ранга внутри таблицы, а соответству­ющую сигма-оценку – с краю. Для облегчения ориентации приведем фрагмент таблицы соответствий PR, а и стенов (табл. 4):

Таблица 4

PR σ стен 99 2,33 10 95 1,64 10 90 1,28 9 85 1,04 8 80 0,84 8 75 0,68 7 70 0,52 6,5 65 0,39 6,5 50 0,25 6 55 0,13 6
PR σ стен 50 0,0 5,5 45 -0,13 5 40 -0,25 35 -0,39 4,5 30 -0,52 4 25 -0,68 4 20 -0,84 15 -1,04 3 10 -1,28 2 5 -1,64 1 1 -2,33 1

В обычных таблицах из соображений симметрии даны лишь зна­чения для PR > 50. Для PR < 50 соответствующие значения находят­ся из тех же таблиц σ = ψ -1(1- PR/100). Например, для PR =35 мы находим 1 - PR/100 = 1 - 0,35 = 0,65, затем - по табл. ψ -1 = 0,39 и бе­рем это значение с отрицательным знаком -0,39. Для нормализации удобно пользоваться графическим методом (нормальной бумагой, стандартной 5-образной кривой и т. п.).