Смекни!
smekni.com

Бодалев А. А. Столин В. В. Аванесов В. С. Общая психодиагностика (стр. 19 из 93)

В результате нормализации интервалы между исходными сыры­ми баллами переоцениваются в соответствии с нормальной моделью. В отличие от процентильной шкалы, нормальная шкала придает боль­ший вес (в дифференциации испытуемых) краям распределения: раз­личия между испытуемыми, набравшими 95 и 90 процентилей, оце­ниваются как более высокие, чем различия между испытуемыми, набравшими 65 и 60 процентилей.

В применении к шкалам оценок (рейтинговым шкалам) метод нормализации интервалов называется «методом последовательных интервалов» (Клигер С. А. и др., 1978, с. 75-81).

В результате применения процедуры нормализации исследователь-психометрист получает для нормативной выборки таблицу перевода сырых баллов в нормализованные баллы. На основе этих таблиц час­то строят графики: деления сырых баллов наносят на числовую ось с неравными интервалами, так что эмпирическое распределение час­тот максимально близко приближается к нормальной форме. Пример такой графической нормализации - профильные листы MMPI (Анастази А., 1982, с. 129).

Так как нормальное распределение описывается всего двумя па­раметрами: средним М (мерой положения) и средним квадратическим (или стандартным) отклонением а (мерой рассеяния), то диаг­ностические нормы в случае нормализованных шкал описываются в единицах отклонений от среднего по выборке; например, заключают, что испытуемый А показал результат, превышающий средний балл на две сигмы, испытуемый В -результат, оказавшийся ниже среднего балла на одну сигму, и т. п. На процентильной шкале этому соответ­ствуют процентильные ранги 95 и 16 соответственно.

Переход к нормальному распределению создает очень удобные условия для количественных операций с диагностической шкалой: как со шкалой интервалов с ней можно производить операции ли­нейного преобразования (умножение и сложение), можно описы­вать диагностические нормы в компактной форме (в единицах от­клонений), можно применять линейный коэффициент корреляции Пирсона, критерии для проверки статистических гипотез, постро­енные в применении к нормальному распределению, т. е. весь ап­парат традиционной статистики (основанной на нормальном рас­пределении). !

Неправомерность онтологизации нормального закона. В тради­ционной психометрике нормальное распределение выступает в роли инструментального понятия, облегчающего оперирование с данны­ми. Но это не означает, что можно забывать об искусственном проис­хождении нормального распределения. Традиции западной тестологии, основанные еще Ф. Гальтоном, предполагают однородность тео­ретических представлений психометрики и биометрики. Точно так же как происхождение нормального распределения при исследовании вариативности биологических характеристик человеческого организма связывается с наличием взаимодействия постоянного фактора гено­типа и изменчивых случайных факторов фенотипа, - происхождение межиндивидуальных психологических различий связывается с гене­тическим кодом, якобы предопределяющим положение индивида на оси нормальной кривой. В действительности же нет никаких оснований приписывать появление нормальной кривой, часто получаемой с помощью специальных статистических непростых процедур, дей­ствию механизма наследственности.

В тех случаях, когда на большой выборке удается получить нор­мальное распределение без каких-либо искусственных способствую­щих этому мер, это опять-таки не означает вмешательства генетики. Закон нормального распределения воспроизводится всякий раз, когда на измеряемое свойство (на формирование определенного уровня спо­собностей индивида) действует множество разных по силе и направ­ленности факторов, независимых друг от друга. История прижизнен­ных средовых воздействий, которые испытывает на себе субъект, так­же подобна последовательности независимых событий: одни факторы действуют в благоприятном направлении, другие - в неблагоприятном, а в результате взаимопогащение их влияний происходит чаще, чем тен­денциозное однонаправленное сочетание (большинство благоприятных или большинство неблагоприятных), т. е. возникает нормальное рас­пределение. Массовые исследования показывают, что введение конт­роля над одним из средовых популяционных факторов (уровень обра­зования родителей, например) приводит к расслоению кривой нормаль­ного распределения: выборочные кривые оказываются смещенными относительно друг друга (Анастази А., 1982, с. 201). Эти результаты служат ярким подтверждением социокультурного происхождения ста­тистических диагностических норм, что одновременно служит осно­ванием для серьезных предосторожностей при переносе норм, полу­ченных на одной популяции, на другие популяции. Однородными мож­но считать только те популяции, по отношению к которым действует одинаковый механизм выборки: ив ситуации создания (стандартиза­ции) теста, и в ситуации его диагностического применения. Здесь при­ходится учитывать и такие нюансы выборочного механизма, как фено­мен нормальных добровольцев. Если выборку стандартизации форми­ровать на студентах, добровольно согласившихся участвовать в тести­ровании, а применение теста планируется на сплошных выборках (в административном порядке), то это грозит определенными ошибками в диагностических суждениях, так как психологический портрет «доб­ровольца» в существенных чертах отличается от портрета испытуемо­го, соглашающегося на тестирование только под административным давлением (Шихирев П.Н, 1979, с. 181).

Подсчет параметров и оценка типа распределения. Для описа­ния выборочного распределения, как правило, используются следую­щие известные параметры:

1. Среднее арифметическое значение:

, (3.1.1)

где xj – балл i-го испытуемого;

yi -значение i-го балла по порядку возрастания;

pi - частота встречающегося i-го балла;

n - количество испытуемых в выборке (объем);

m - количество градаций шкалы (количество баллов).

2. Среднее квадратическое (стандартное) отклонение:

3.

, (3.1.2)

где

- сумма квадратов тестовых баллов для и испытуемых.

3. Асимметрия:

(3.1.3)

где

- среднее арифметическое значение;

S - стандартное отклонение;

θ - среднее кубическое значение:

,

С - среднее квадратическое:

4. Эксцесс:

, (3.1.4)

где Q - среднее значение четвертой степени:

.

Стандартная ошибка среднего арифметического значения (мате­матического ожидания) оценивается по формуле:

(3.1.5)

На основе ошибки математического ожидания строятся довери­тельные интервалы:

)

Если тестовый балл какого-либо испытуемого попадает в грани­цы доверительного интервала, то нельзя считать, что испытуемый обладает повышенным (или пониженным) значением измеряемого свойства с заданным уровнем статистической значимости.

Асимметрия и эксцесс нормального распределения должны быть равны нулю. Если хотя бы один из двух параметров существенно от­личается от нуля, то это означает анормальность полученного эмпи­рического распределения.

Проверку значимости асимметрии можно произвести на основе общего неравенства Чебышева:

(3.1.6)

где Sa - дисперсия эмпирической оценки асимметрии:

, (3.1.7)

где р - уровень значимости или вероятность ошибки первого рода: ошибки в том, что будет принят вывод о незначимости асимметрии при наличии значимой асимметрии (в формулу подставляют стандар­тные р = 0,05 или р = 0,01 и проверяют выполнение неравенства). Сходным образом оценивается значимость эксцесса:

(3.1.8)

где Sе - эмпирическая дисперсия оценки эксцесса:

. (3.1.9)

]

Гипотезы об отсутствии асимметрии и эксцесса принимаются с вероятностью ошибки р (пренебрежимо малой), если выполняются неравенства (3.1.6) и (3.1.8).

Более легкий метод проверки нормальности эмпирического рас­пределения основывается на универсальном критерии Колмогорова. Для каждого тестового балла у. (для каждого интервала равнозначно­сти при дискретизации непрерывной хронометрической шкалы) вы­числяется величина D. - модуль отклонения эмпирической и теорети­ческой интегральных функций распределения:

(3.1.10)