Смекни!
smekni.com

Бодалев А. А. Столин В. В. Аванесов В. С. Общая психодиагностика (стр. 20 из 93)

где F- эмпирическая интегральная функция (значение кумуляты в данной точке уj); U — теоретическая интегральная функция, взятая из таблиц[11]. Среди Dj отыскивается максимальное значение Dmax

, и вели­чина

сравнивается с табличным значением
критерия Колмогорова.

В таблице 5 приведены асимптотические критические значения для распределения Колмогорова (при

). Близость эмпиричес­кого значения λе к левосторонним стандартным квантилям λt позво­ляет констатировать близость эмпирического и предполагаемого тео­ретического распределения с пренебрежимо малой вероятностью ошибки р (0,01; 0,05; 0,10 и т, п.). Близость λе к правосторонним стан­дартным квантилям λ­­t позволяет сделать вывод о статистически зна­чимом отсутствии согласованности эмпирического и теоретического распределений. Надо помнить, что критерий Колмогорова, очень про­стой в вычислительном' отношении, обеспечивает надежные выводы лишь при
200: Критерий Колмогорова резко снижает свою эф­фективность, когда наблюдения группируются по малому количеству интервалов равнозначности. Например, при n = 200 количество ин­тервалов должно быть не менее 20 (примерно по 10 наблюдений на каждый интервал в среднем).

Таблица 5

Квантиль λt 0,44 0,52 0,57 0,61 0,65 0,71
Вероятность p 0,99 0,95 0,90 0,85 0,80 0,70
Квантиль λt 0,89 0,97 1,07 1,22 1,36 1,52 1,63
Вероятность p 0,40 0,30 0,20 0,15 0,05 0,02 0,01

Если проверка согласованности эмпирического распределения с нормальным дает положительные результаты, то это означает, что полученное распределение можно рассматривать как устойчивое -репрезентативное по отношению к генеральной совокупности - и, следовательно, на его основе можно определить репрезентативные тестовые нормы. Если проверка не выявляет нормальности на требу­емом уровне, то это означает, что либо выборка мала и нерепрезента­тивна к популяции, либо измеряемые свойство и устройство теста (спо­соб подсчета) вообще не дают нормального распределения.

В принципе отнюдь не обязательно все нормативные распределе­ния сводить к нормальным. Можно с равным успехом пользоваться хорошо разработанными моделями гамма-распределения, пуассоновского распределения и т. п. Критерий Колмогорова позволяет оценить близость вашего эмпирического распределения к любому теоретичес­кому распределению. При этом устойчивым и репрезентативным мо­жет оказаться распределение любого типа. Если из нормальности, как правило, следует устойчивость, то обратное неверно -устойчивость вовсе не обязательно предполагает нормальность распределения.

Наличие значимой положительной асимметрии (см. рис. 2,а) сви­детельствует о том, что в системе факторов, детерминирующих зна­чение измеряемого показателя, преобладают факторы, действующие в одном направлении - в сторону повышения показателя. Такого рода отклонения появляются при использовании хронометрических пока­зателей: испытуемый не может решить задачу быстрее определенно­го минимально необходимого периода, но может существенно долго задерживаться с ее решением. На практике распределения такого рода преобразуют в приближенно нормальное распределение с помощью логарифмической трансформации:

(3.1.11)

При этом говорят, что распределение хронометрических показа­телей подчиняется «логнормальному» закону.

Подобную алгебраическую нормализацию тестовой шкалы при­меняют и к показателям с еще более резко выраженной положитель­ной асимметрией. Например, в процедурах контент-анализа сам тес­товый показатель является частотным: он измеряет частоту появле­ния определенных категорий событий в текстах. Для редких катего­рий вероятность появления значительно меньше 0,5. Формула преобразования

(3.1.12)

позволяет придать необходимую 5-образную форму кумуляте.

Стандартизация шкалы. В психометрике следует различать две формы стандартизации. Под стандартизацией теста понимают преж­де всего стандартизацию самой процедуры проведения инструкций, бланков, способа регистрации, условий и т. п. Без стандартизации теста невозможно получить нормативное распределение тестовых баллов и, следовательно, тестовых норм.

Под стандартизацией шкалы понимают линейное преобразование масштаба нормальной (или искусственно нормализованной) шкалы. В общем случае формула стандартизации выглядит так:

, (3.1.13).

где xi - исходный балл по «сырой» шкале, для которой доказана нор­мальность распределения;

- среднее арифметическое по «сырому» распределению; S - «сырое» стандартное отклонение;

М- математическое ожидание по выбранной стандартной шкале;

σ - стандартное отклонение по стандартной шкале.

Если шкала подвергалась предварительной искусственной норма­лизации интервалов, то формула упрощается:

zj =σ zj =M (3.1.14)

Приведем параметры для наиболее популярных стандартных шкал:

1) T -шкала Маккола (тест-опросник MMPI и другие тесты):

М = 50 и σ = 10,

2) шкала IQ : М = 100 и σ = 15,

3) шкала «стэнайнов» (целые численные значения от 1 до 9 -стан­дартная девятка): М = 5,0 и σ = 2,

4) шкала «стенов» (стандартная десятка, 16PF Кеттелла):

М = 5,5 .и σ = 2.

Чтобы различать стандартные баллы, полученные с помощью линейной стандартизации и нелинейной нормализации интервалов, Р. Кеттелл ввел понятие «S-стенов» и «n-стенов». Таблицы «и-стенов», естественно, точнее отражают квантили эмпирического нормального распределения. Приведем образец такой таблицы для фактора А из тест-опросника 16PF;

Сырые баллы 0-4 5-6 7 8-9 10-12 13 14-15 16 17-18 19-20 Стены 1 2 3 4 5 6 7 8 9 10

Применение стандартных шкал позволяет использовать более грубые, приближенные способы проверки типа распределения тесто­вых баллов. Если, например, процентильная нормализация с перево­дом в стены и линейная нормализация с переводом в стены по фор­муле (3.1.13) дают совпадающие целые значения стенов для каждого Y, то это означает, что распределение обладает нормальностью с точ­ностью до «стандартной десятки».

Применение стандартных шкал необходимо для соотнесения ре­зультатов по разным тестам, для построения «диагностических про­филей» по батарее тестов и тому подобных целей.

Проверка устойчивости распределения. Общая логика проверки устойчивости распределения основывается на индуктивном рассуж­дении: если половинное (полученное по половине выборки) распре­деление хорошо моделирует конфигурацию целого распределения, то можно предположить, что это целое распределение будет также хоро­шо моделировать распределение генеральной совокупности.

Таким образом, доказательство устойчивости распределения оз­начает доказательство репрезентативности тестовых норм. Традици­онный способ доказательства устойчивости сводится к наличию хо­рошего приближения эмпирического распределения к какому-либо те­оретическому. Но если эмпирическое распределение не приближается к теоретическому, несмотря на значительное увеличение объема выборки, то приходится прибегать к более общему индуктивному ме­тоду доказательства.

Простейший его вариант может быть сведен к получению таблиц перевода сырых баллов в нормализованную шкалу по данным всей выборки и применению этих таблиц для каждого испытуемого из по­ловины выборки; если распределение нормализованных баллов из по­ловины выборки хорошо приближается к нормальному, то это значит, что заданные таблицами нормализации тестовые нормы определены устойчиво. Близость к нормальному распределению проверяется с по­мощью критерия Колмогорова (при n <200 целесообразно использо­вать более мощные критерии: «хи-вадрат» или «омега-квадрат»).

При этом под «половиной выборки» подразумевается случайная половина, в которую испытуемые зачисляются случайным образом -с помощью двоичной случайной последовательности (типа подбра­сывания монетки и т. п.). В более общем случае такой простейший метод установления однородности двух эмпирических распределений может быть применен и при разбиении выборки по какому-либо сис­тематическому признаку. Если, в частности, по какому-либо из популяционно значимых признаков (пол, возраст, образование, профес­сия) психолог получает значимую неоднородность эмпирических распределений; то это значит, что относительно данных популяционных категорий тестовые нормы должны быть специализированы (одна таблица норм - для мужчин, другая - для женщин и т. д.).

Более статистически корректный метод проверки однородности двух распределений, полученных при расщеплении выборки на рав­ные части, опять же связан с применением критерия Колмогорова. Для этого с табличным значением сравнивается:

(3.1.15)

где Ке - эмпирическое значение статистики Колмогорова;

Fj1 - кумулятивная относительная частота для у-того интервала шкалы по первой половине выборки;