где F- эмпирическая интегральная функция (значение кумуляты в данной точке уj); U — теоретическая интегральная функция, взятая из таблиц[11]. Среди Dj отыскивается максимальное значение Dmax , и величина
сравнивается с табличным значением критерия Колмогорова.В таблице 5 приведены асимптотические критические значения для распределения Колмогорова (при
). Близость эмпирического значения λе к левосторонним стандартным квантилям λt позволяет констатировать близость эмпирического и предполагаемого теоретического распределения с пренебрежимо малой вероятностью ошибки р (0,01; 0,05; 0,10 и т, п.). Близость λе к правосторонним стандартным квантилям λt позволяет сделать вывод о статистически значимом отсутствии согласованности эмпирического и теоретического распределений. Надо помнить, что критерий Колмогорова, очень простой в вычислительном' отношении, обеспечивает надежные выводы лишь при 200: Критерий Колмогорова резко снижает свою эффективность, когда наблюдения группируются по малому количеству интервалов равнозначности. Например, при n = 200 количество интервалов должно быть не менее 20 (примерно по 10 наблюдений на каждый интервал в среднем).Таблица 5
Квантиль λt | 0,44 | 0,52 | 0,57 | 0,61 | 0,65 | 0,71 | |
Вероятность p | 0,99 | 0,95 | 0,90 | 0,85 | 0,80 | 0,70 | |
Квантиль λt | 0,89 | 0,97 | 1,07 | 1,22 | 1,36 | 1,52 | 1,63 |
Вероятность p | 0,40 | 0,30 | 0,20 | 0,15 | 0,05 | 0,02 | 0,01 |
Если проверка согласованности эмпирического распределения с нормальным дает положительные результаты, то это означает, что полученное распределение можно рассматривать как устойчивое -репрезентативное по отношению к генеральной совокупности - и, следовательно, на его основе можно определить репрезентативные тестовые нормы. Если проверка не выявляет нормальности на требуемом уровне, то это означает, что либо выборка мала и нерепрезентативна к популяции, либо измеряемые свойство и устройство теста (способ подсчета) вообще не дают нормального распределения.
В принципе отнюдь не обязательно все нормативные распределения сводить к нормальным. Можно с равным успехом пользоваться хорошо разработанными моделями гамма-распределения, пуассоновского распределения и т. п. Критерий Колмогорова позволяет оценить близость вашего эмпирического распределения к любому теоретическому распределению. При этом устойчивым и репрезентативным может оказаться распределение любого типа. Если из нормальности, как правило, следует устойчивость, то обратное неверно -устойчивость вовсе не обязательно предполагает нормальность распределения.
Наличие значимой положительной асимметрии (см. рис. 2,а) свидетельствует о том, что в системе факторов, детерминирующих значение измеряемого показателя, преобладают факторы, действующие в одном направлении - в сторону повышения показателя. Такого рода отклонения появляются при использовании хронометрических показателей: испытуемый не может решить задачу быстрее определенного минимально необходимого периода, но может существенно долго задерживаться с ее решением. На практике распределения такого рода преобразуют в приближенно нормальное распределение с помощью логарифмической трансформации:
(3.1.11)При этом говорят, что распределение хронометрических показателей подчиняется «логнормальному» закону.
Подобную алгебраическую нормализацию тестовой шкалы применяют и к показателям с еще более резко выраженной положительной асимметрией. Например, в процедурах контент-анализа сам тестовый показатель является частотным: он измеряет частоту появления определенных категорий событий в текстах. Для редких категорий вероятность появления значительно меньше 0,5. Формула преобразования
(3.1.12)позволяет придать необходимую 5-образную форму кумуляте.
Стандартизация шкалы. В психометрике следует различать две формы стандартизации. Под стандартизацией теста понимают прежде всего стандартизацию самой процедуры проведения инструкций, бланков, способа регистрации, условий и т. п. Без стандартизации теста невозможно получить нормативное распределение тестовых баллов и, следовательно, тестовых норм.
Под стандартизацией шкалы понимают линейное преобразование масштаба нормальной (или искусственно нормализованной) шкалы. В общем случае формула стандартизации выглядит так:
, (3.1.13).где xi - исходный балл по «сырой» шкале, для которой доказана нормальность распределения;
- среднее арифметическое по «сырому» распределению; S - «сырое» стандартное отклонение;М- математическое ожидание по выбранной стандартной шкале;
σ - стандартное отклонение по стандартной шкале.
Если шкала подвергалась предварительной искусственной нормализации интервалов, то формула упрощается:
zj =σ zj =M (3.1.14)
Приведем параметры для наиболее популярных стандартных шкал:
1) T -шкала Маккола (тест-опросник MMPI и другие тесты):
М = 50 и σ = 10,
2) шкала IQ : М = 100 и σ = 15,
3) шкала «стэнайнов» (целые численные значения от 1 до 9 -стандартная девятка): М = 5,0 и σ = 2,
4) шкала «стенов» (стандартная десятка, 16PF Кеттелла):
М = 5,5 .и σ = 2.
Чтобы различать стандартные баллы, полученные с помощью линейной стандартизации и нелинейной нормализации интервалов, Р. Кеттелл ввел понятие «S-стенов» и «n-стенов». Таблицы «и-стенов», естественно, точнее отражают квантили эмпирического нормального распределения. Приведем образец такой таблицы для фактора А из тест-опросника 16PF;
Сырые баллы 0-4 5-6 7 8-9 10-12 13 14-15 16 17-18 19-20 Стены 1 2 3 4 5 6 7 8 9 10
Применение стандартных шкал позволяет использовать более грубые, приближенные способы проверки типа распределения тестовых баллов. Если, например, процентильная нормализация с переводом в стены и линейная нормализация с переводом в стены по формуле (3.1.13) дают совпадающие целые значения стенов для каждого Y, то это означает, что распределение обладает нормальностью с точностью до «стандартной десятки».
Применение стандартных шкал необходимо для соотнесения результатов по разным тестам, для построения «диагностических профилей» по батарее тестов и тому подобных целей.
Проверка устойчивости распределения. Общая логика проверки устойчивости распределения основывается на индуктивном рассуждении: если половинное (полученное по половине выборки) распределение хорошо моделирует конфигурацию целого распределения, то можно предположить, что это целое распределение будет также хорошо моделировать распределение генеральной совокупности.
Таким образом, доказательство устойчивости распределения означает доказательство репрезентативности тестовых норм. Традиционный способ доказательства устойчивости сводится к наличию хорошего приближения эмпирического распределения к какому-либо теоретическому. Но если эмпирическое распределение не приближается к теоретическому, несмотря на значительное увеличение объема выборки, то приходится прибегать к более общему индуктивному методу доказательства.
Простейший его вариант может быть сведен к получению таблиц перевода сырых баллов в нормализованную шкалу по данным всей выборки и применению этих таблиц для каждого испытуемого из половины выборки; если распределение нормализованных баллов из половины выборки хорошо приближается к нормальному, то это значит, что заданные таблицами нормализации тестовые нормы определены устойчиво. Близость к нормальному распределению проверяется с помощью критерия Колмогорова (при n <200 целесообразно использовать более мощные критерии: «хи-вадрат» или «омега-квадрат»).
При этом под «половиной выборки» подразумевается случайная половина, в которую испытуемые зачисляются случайным образом -с помощью двоичной случайной последовательности (типа подбрасывания монетки и т. п.). В более общем случае такой простейший метод установления однородности двух эмпирических распределений может быть применен и при разбиении выборки по какому-либо систематическому признаку. Если, в частности, по какому-либо из популяционно значимых признаков (пол, возраст, образование, профессия) психолог получает значимую неоднородность эмпирических распределений; то это значит, что относительно данных популяционных категорий тестовые нормы должны быть специализированы (одна таблица норм - для мужчин, другая - для женщин и т. д.).
Более статистически корректный метод проверки однородности двух распределений, полученных при расщеплении выборки на равные части, опять же связан с применением критерия Колмогорова. Для этого с табличным значением сравнивается:
(3.1.15)где Ке - эмпирическое значение статистики Колмогорова;
Fj1 - кумулятивная относительная частота для у-того интервала шкалы по первой половине выборки;