Смекни!
smekni.com

Бодалев А. А. Столин В. В. Аванесов В. С. Общая психодиагностика (стр. 22 из 93)

Рис. 7. Соотношение распределений Sm стандартное отклонение эмпирического среднего, St стандартное отклонение ошибки

Как же определить ошибку измерения? На помощь приходят кор­реляционные методы, позволяющие определить точность (надеж­ность) через устойчивость и согласованность результатов, получае­мых как на уровне целого теста, так и на уровне отдельных его пун­ктов.

Надежность целого теста имеет две разновидности.

1. Надежность-устойчивость (ретестовая надежность). Измеряется с помощью повторного проведения теста на той же выборке испыту­емых, обычно через две недели после первого тестирования. Для ин­тервальных шкал подсчитывается хорошо известный коэффициент корреляции произведения моментов Пирсона:

где х1i. - тестовый балл i-го испытуемого при первом измерении;

х2i. - тестовый балл того же испытуемого при повторном измерении;

n - количество испытуемых.

Оценка значимости этого коэффициента основывается на несколь­ко иной логике, чем это обычно делается при проверке нулевой гипо­тезы - о равенстве корреляций нулю. Высокая надежность достига­ется тогда, когда дисперсия ошибки оказывается пренебрежительно малой. 'Относительную долю дисперсии ошибки легко определить по формуле

(3.2.4)

Таким образом, для нас существеннее близость к единице, а не отдаленность от нуля. Обычно в тестологической практике редко уда­ется достичь коэффициентов, превышающих 0,8. При г = 0,75 отно­сительная доля стандартной ошибки равна

. Этой ошиб­кой, очевидно, нельзя пренебречь. При такой ошибке эмпирически полученное отклонение индивидуального тестового балла от средне­го по выборке оказывается, как правило, завышенным. Для того что­бы выяснить «истинное» значение тестового балла индивида, приме­няется формула

(3.2.5)

где

- истинный балл; '

хi — эмпирический балл i-го испытуемого;

r - эмпирически измеренная надежность теста;

- среднее для теста.

Предположим, испытуемый получил балл IQ по шкале Стэнфорда.-Бине, равный 120 нормализованным очкам, М = 100, г = 0,9. Тог­да истинный балл

= 0,9
120 + 0,1
100 =118.

Конечно, требование ретестовой надежности является коррект­ным лишь по отношению к таким психическим характеристикам ин­дивидов, которые сами являются устойчивыми во времени. Если мы создаем тест для измерения эмоциональных состояний (бодрости, тре­воги и т. д.), то, очевидно, требовать от него ретестовой надежности бессмысленно: у испытуемых быстрее изменится состояние, чем они забудут свои ответы по первому тестированию.

Для шкал порядка в качестве меры устойчивости к перетестиро­ванию используется коэффициент ранговой корреляции Спирмена:

, (3.2.6)

где di — разность рангов /-го испытуемого в первом и втором ранго­вом ряду.

С помощью компьютера определяется более надежный коэффи­циент ранговой корреляции Кендалла (1975).

2. Надежность- согласованность (одномоментная надежность).

Эта разновидность надежности не зависит от устойчивости, име­ет особую содержательную и операциональную природу. Простей­шим способ ее измерения состоите коррелировании параллельных форм теста (Анастази Д., 1982, кн. 1,с. 106). Чаще всего параллель­ные формы теста получают расщеплением составного теста на «чет­ную» и «нечетную» половины: к первой относятся четные пункты, ко второй - нечетные. По каждой половине рассчитываются суммар­ные баллы и между двумя рядами баллов по испытуемым определя­ются допустимые (с учетом уровня измерения) коэффициенты кор­реляции. Если параллельные тесты не нормализованы, то предпоч­тительнее использовать ранговую корреляцию. При таком расщеп­лении получается коэффициент, относящийся к половинам теста. Для того чтобы найти надежность целого теста пользуются формулой Спирмена - Брауна:

(3.2.7)

где rx - эмпирически рассчитанная корреляция для половин.

Делить тест на две половины можно разными способами, и каж­дый раз получаются несколько разные коэффициенты (Аванесов В. С., 1982, с. 122), поэтому в психометрике существует способ оценки син­хронной надежности, который соответствует разбиению теста на та­кое количество частей, сколько в нем отдельных пунктов. Такова фор­мула Кронбаха:

(3.2.8)

где а - коэффициент Кронбаха;

k- количество пунктов теста;

- дисперсия по j-му пункту теста;

- дисперсия суммарных баллов по всему тесту.

Обратите внимание на структурное подобие формулы Кронбаха (3.2.2) и формулы Рюлона (3.2.8).

Несколько раньше была получена формула Кьюдера - Ричардсо­на, аналогичная формуле Кронбаха для частного случая - когда отве­ты на каждый пункт теста интерпретируются как дихотомические переменные с двумя значениями (1 и 0):

(3.2.9)

где KR20 - традиционное обозначение получаемого коэффициента;

-дисперсия i-и дихотомической переменной, какой является

i-й пункт теста; р =

, q = 1 - p

В 1957 г. Дж. Ките предложил следующий критерий для оценки статистической значимости коэффициента a:

(3.2.10)

где

- эмпирическое значение статистики % квадрат с п-1 степе­нью свободы;

k - количество пунктов теста;

n - количество испытуемых;.

a - надежность.

Формулы (3.2.8) и (3.2.9) позволяют оценить взаимную согласо­ванность пунктов теста, используя при этом только подсчет диспер­сий. Однако коэффициенты а и KR2I> позволяют оценить и среднюю корреляцию между i-м и j-м произвольными пунктами теста, так как связаны с этой средней корреляцией следующей формулой:

11)

где

- средняя корреляция между пунктами теста. Легко увидеть идентичность формулы (3.2.11) обобщенной формуле Спирмена - Бра­уна, позволяющей прогнозировать повышения синхронной надежно­сти теста с увеличением количества пунктов теста в k раз (Аванесов В. С., 1982, с. 121). Из этой формулы видно, что при больших k малое значение
может сочетаться с высокой надежностью. Пусть
= 0,1, a k =100, тогда по формуле (3.2.11)

Широкое распространение компьютерных программ факторного анализа для исследования взаимоотношений между пунктами теста (по одномоментным данным) привело к обоснованию еще одной до­статочно эффективной формулы надежности теста, которой легко воспользоваться, получив стандартную распечатку компьютерных результатов факторного анализа по методу главных компонент:

(3.2.12)

где θ - коэффициент, получивший название тета-надежности теста;

k - количество пунктов теста;

λ1 - наибольшее значение характеристического корня матрицы

интеркорреляций пунктов (наибольшее собственное значение, или аб­солютный вес первой главной компоненты).

Как и предыдущие формулы, формула (3.2.12) также относится к оценке надежности теста, направленного на измерение одной характе­ристики. Но, кроме того, она применима и для многофакторного теста, хотя и нуждается в пересчете после первоначального отбора пунктов, релевантных фактору (после того, как на основании многофакторного анализа отобраны пункты по одному фактору, снова проводится фак­торный анализ - только для этих отобранных пунктов).

Надежность отдельных пунктов теста. Надежность теста обес­печивается надежностью пунктов, из которых он состоит. Чтобы по­высить ретестовую надежность теста в целом, надо отобрать из ис­ходного набора пунктов, апробируемых в пилотажных психометри­ческих экспериментах, такие пункты, на которые испытуемые дают устойчивые ответы. Для дихотомических пунктов (типа «решил - не решил», «да - нет») устойчивость удобно измерять с использованием четырехклеточной матрицы сопряженности: