Смекни!
smekni.com

Бодалев А. А. Столин В. В. Аванесов В. С. Общая психодиагностика (стр. 23 из 93)

Тест 1

Да Нет

a B
c D

Да Тест 2

Нет

Здесь в клеточке а суммируются ответы «Да», данные испытуе­мым при первом и втором тестировании, в клеточке b - число случа­ев, когда испытуемый при первом тестировании отвечал «Да», а при втором - «Нет» и т. д. В качестве меры корреляции вычисляется фи-коэффициент:

(3.2.13)

Как известно, значимость фи-коэффициента определяется с по мощью критерия хи-квадрат:

(3.2.14)

Если вычисленное значение хи-квадрат выше табличного с од­ной степенью свободы, то нулевая гипотеза (о нулевой устойчивос­ти) отвергается. Удобство использования фи-коэффициента состоит в том, что он одновременно оценивает степень оптимальности данного пункта теста по силе (трудности): фи-коэффициент оказывает­ся тем меньшим, чем сильнее частота ответов «да» отличается от частоты ответа «нет».

Кроме того, сама четырехклеточная матрица позволяет просле­дить возможную несимметричность в устойчивости ответов «да» и «нет» (это важнее для задач, чем для вопросов: например, может ока­заться, что все испытуемые, уже решившие однажды данную задачу, решают ее при повторном тестировании; это наводит на мысль о том, что при втором тестировании происходит сбережение опыта, приоб­ретенного при первом тестировании). Выявленные в результате тако­го анализа неустойчивые и неинформативные (слишком сильные или слишком слабые) пункты должны быть исключены из теста. Пункты следует считать недостаточно устойчивыми, если на репрезентатив­ной выборке величина

превышает 0,71. При этом φ< 0,5.

Для т<?го чтобы повысить одномоментную (синхронную) надеж­ность теста, следует из исходной пилотажной батареи пунктов отбро­сить те, которые плохо согласованы с остальными[12]. В отсутствие ком­пьютера согласованность для пунктов также очень просто определяет­ся с помощью четырехклеточной матрицы. В этом случае в первом стол­бце суммируются ответы испытуемых из «высокой».группы (пр величине суммарного балла), во втором столбце - из «низкой».

Высокая Низкая

A B
C D

Да

Нет

При нормальном распределении частот суммарных баллов «вы­сокая» и «низкая» группы отсекаются справа и слева 27%-ными мар­гинальными квантилями (рис. 8).

Для оценки согласованности с суммарным баллом применяется полная[13] или упрощенная формула фи-коэффициента:

(3.2.15)[14]

где

- количество ответов «верно» («да») на i-й пункт теста;

N* - сумма всех элементов матрицы;

N* = n • 0,54 где n - объём выборки;

Pi = а + b - При включении в эстремальную группу 1/3 выборки

N* = 0,66 • n.

Рис. 8. Квантили «высокой» и «низкой» группы на графике распределения тестовых баллов

В некоторых случаях подобный анализ позволяет уточнить ключ для пункта: если пункт получает значимый положительный фи-коэф­фициент, то ключ определяется значением «+1», если пункт получает значимый отрицательный фи-коэффициент значением «-1». Если пункт получает незначимый фи-коэфф.ициент, то его целесообразно исключить из теста.

При ручных вычислениях фи-коэффициента удобно вначале с помощью формул (3.2.14) и (3.2.15) определить граничное значение значимого (по модулю) фи-коэффициента. Например, при объеме выборки в 100 человек и уровне значимости р < 0,01 пороговое зна­чение вычисляется так:

(3.2.16)

При постоянном использовании компьютера при подсчете сум­марных баллов ключ для каждого пункта Q целесообразно опреде­лить в виде самого фи-коэффициента (или другого коэффициента корреляции), определенного при коррелировании ответов на пункт с сум­марным баллом. Тогда тестовый балл подсчитывается по формуле

(3.2.17)

где хi — суммарный балл i-го испытуемого;

- ответ «верно» (+1) или «неверно» (-1) i-го испытуемого на i-й пункт;

Сi- ключ для i-го пункта: С = +1 для прямого, С= -1 для обрат­ного.

Более чувствительный коэффициент, который также применяет­ся для дихотомических пунктов, - это точечный бисериальный коэф­фициент корреляции, учитывающий амплитуду отклонения индиви­дуальных суммарных баллов от среднего балла:

3.2.18)

где

x* - сумма финальных баллов тех индивидов, которые дали утвердительный ответ на i-й пункт теста (решили i-ю задачу);

Sx - стандартное отклонение для суммарных баллов всех индиви­дов из выборки;

- стандартное отклонение по i-му пункту;

- средний балл по всем пунктам.

А. Анастази относит критерий внутренней согласованности тес­та к валидности (Анастази А., 1982, кн. 1, с. 143), однако если и мож­но в данном случае говорить о валидности, то только в смысле осо­бой внутренней валидности теста. Как правило, слишком высокая со­гласованность снижает внешнюю валидность теста по критерию (см. раздел 3.3). Если проверяется согласованность пунктов, составлен­ных одним автором (одним коллективом по стандартной инструкции), то выявление достаточного набора согласованных пунктов свидетель­ствует о внутренней валидности (согласованности) разработанного диагностического понятия (конструкта).

В компьютерных данных факторного анализа аналогом корреля­ции пункта с суммарным баллом является нагрузка пункта на веду­щий фактор («факторная валидность» в терминах А. Анастази). Если прибегать к геометрическому изображению нагрузки как проекции вектора-пункта на ось-фактор, то структура пунктов хорошо согласо­ванного теста предстанет в виде пучка векторов, плотно прилегаю­щих к фактору и вытянувшихся вдоль его оси (рис. 9).

Рис. 9. Векторная модель соотношения «прямых» и «обратных» эмпирических пунктов с релевантным (измеряемым) фактором и иррелевантными («шумовыми») факторами

Последовательность действий при проверке надежности:

1. Узнать, существуют ли данные о надежности теста, предпо­лагаемого к использованию, на какой популяции и в какой диагнос­тической ситуации проводилась проверка. Если проверки не было или признаки новых популяции и ситуации явно специфичны, про­вести заново проверку надежности с учетом указанных ниже воз­можностей.

2. Произвести повторное тестирование на всей выборке стан­дартизации и подсчитать все коэффициенты, как для целого теста, так и для его отдельных пунктов. Анализ полученных коэффициен­тов позволит понять, насколько пренебрежима ошибка измерения, дает ли данный тест интервальную шкалу (высокий r) или только диагностичен для крайних групп (высокий φ), насколько устойчиво измеряемое свойство во времени (возможен ли статистический про­гноз - проекция тестового балла на будущее), в каких своих пунк­тах тест менее надежен (анализ этих пунктов позволяет психологи­чески осмыслить содержательный механизм взаимодействия пунк­тов с испытуемыми).

3. Если возможности обследования испытуемых ограниченны, произвести повторное тестирование только на части выборки (не ме­нее 30 испытуемых), подсчитать (вручную) ранговую или четырех-клеточную корреляцию для оценки внутренней согласованности и ста­бильности теста в целом.

3.3. ВАЛИДНОСТЬ ТЕСТОВ

Проблемы валидизации психологических тестов являются цент­ральными для дифференциальной психометрики, но, к сожалению, до сих пор решенными не до конца. Решение этой проблемы зависит не от статистического аппарата, а от уровня развития теоретического аппарата дифференциальной психологии.

Валидность и надежность. Валидность (или обоснованность) всякой процедуры измерения состоит в однозначности (устойчивос­ти) получаемых результатов относительно измеряемых свойств объек­тов, т, е. относительно предмета измерения. Отличие понятия валидности от надежности измерения удобно раскрывать с помощью раз­личения «объекта» и «предмета» измерения. Надежность - это устой­чивость процедуры относительно объектов. Надежность не обязательно предполагает валидность. В психологии довольно часто возникает такая ситуация, когда исследователь вначале предлагает определенную процедуру измерения, показывает ее надежность -способность устойчиво различать объекты, но вопрос о валидности остается открытым.

Если в сенсорной психофизике вопрос о валидности измерений оказывается в значительной степени затушеванным тем обстоятель­ством, что простейшие физические стимулы достаточно однозначно детерминируют измеряемые свойства ощущений, то в дифференци­альной психометрике значимость проблемы валидности резко возра­стает. Здесь ситуация подобна той, когда в психофизическом опыте испытуемому не указывают, по какому именно параметру следует срав­нивать стимулы. Пусть испытуемый А понял инструкцию так, что стимульные объекты надо сравнивать по весу, а испытуемый Б - по раз­меру. Если процедура измерения будет повторена по отношению к тем же объектам, то она даст вполне устойчивые данные относитель­но объектов, но не даст валидной информации ни о шкале ощущений «веса», ни о шкале ощущений «размера».