Смекни!
smekni.com

Бодалев А. А. Столин В. В. Аванесов В. С. Общая психодиагностика (стр. 31 из 93)

Приведенный выше пример показывает, что в некоторых случаях целесообразно начинать решать проблемы психопрогностики без вся­кого привлечения внешней по отношению к тесту критериальной ин­формации, т. е. средствами проверки надежности, но не средствами проверки валидности. Если уже таким способом будет получен отри­цательный результат, то заведомо будет получен и для измерения ва­лидности статического прогноза (вспомним основной принцип: валидность методики не превышает ее надежность).

Однако надежность лишь необходимое, но, естественно, недоста­точное условие прогностической валидности. Можно убедиться в высо­кой устойчивости тестового показателя на длительных промежутках вре­мени, но из этого вовсе не следует, что будут получены значимые линей­ные корреляции этого показателя с требуемым критерием валидности -эффективности.- корреляции, оправдывающие статический прогноз.

Как правило, на основе диагностики принимаются решения, кото­рые соотносятся между собой как события на шкале наименований или на шкале порядка. Каким образом учитываются сегодня при приеме в вуз показатели школьной успеваемости абитуриентов? Существуют три варианта, три градации, соотносимые друг с другом по шкале порядка: выпускникам школы - медалистам предоставляются льготные условия (при успехе на первом экзамене от остальных вступительных экзаме­нов медалист освобождается), лица с удовлетворительным средним баллом допускаются к конкурсным вступительным экзаменам и сдают все экзамены; наконец, лица с неудовлетворительным средним баллом могут вообще не допускаться к вступительным экзаменам. На этом при­мере видно, что средний балл аттестата используется как некоторый показатель «теста», в соответствии с которым абитуриентов разделяют на три категории, по отношению к которым неявно применяется «по­рядковый» прогноз: предполагается, что медалисты будут успешнее обычных выпускников школ, а обычные выпускники - успешнее тех, кто учился в школе очень слабо.

«Порядковый» прогноз сохраняет свою эффективность не только в статических условиях, но и в условиях таких динамических измене­ний объектов прогнозирования, при которых порядковая структура оказывается неизменной. Предположим, что в: ходе обучения в вузе все студенты по мере более глубокого ознакомления с предметом ис­пытывают нарастающий интерес к своей специальности, но если по­рядковая структура сохраняется (Ха продолжает превышать Xb, несмот­ря на то что Xb приближается к Ха), то «порядковый» прогноз все рав­но остается корректным.

Линейные и порядковые прогностические стратегии на практике применяются не к одномерным, а к многомерным данным. Среди математических моделей прогнозирования до сих пор наибольшей популярностью пользуются относительно простые (а иногда и нео­правданно упрощенные) регрессионные модели.

При этом для многомерного случая задача психометриста сводится к построению уравнения множественной регрессии:

Y= ß1X1+ ß2X2…..+ ßiXi+ ßkXk (3.5.1)

где Y- прогнозируемая переменная (критерий прогностической ва-лидности);

Xi - значение i-го тестового показателя из рассматриваемой бата­реи тестовых показателей;

ßi, - значение весового коэффициента, указывающего, на сколько (в единицах стандартных отклонений) изменяется прогнозируемая переменная при изменении тестового показателя Xi.

Для составления указанного уравнения требуется произвести «уп­реждающее» измерение тестовых показателей по отношению к критериальному показателю Y, измерение которого производится по ис­течении некоторого отрезка времени

T, называемого в прогнозиро­вании периодом упреждения.

Общая эффективность прогноза на основе регрессионного урав­нения оценивается с помощью подсчета коэффициента множествен­ной корреляции R2 (Суходольский Г. В., 1972) и последующей оценки его значимости по критерию Фишера:

(3.5.2)

где

- эмпирическое значение статистики Фишера со степенями сво­боды V1 = k и У2 = N-k;

N— количество индивидов;

k - количество тестовых показателей.

Не следует забывать, что основой применения этой модели про­гноза является экстраполяция - предположение о том, что на новом отрезке времени

T’ будут действовать те же тенденции связи пере­менных, что и на отрезке
T, на котором прежде измерялись весовые коэффициенты ßi. Не следует также забывать, что корректность про­гноза обусловлена периодом упреждения: для больших (или меньших)
T использование уравнения (3.5.1) может оказаться некорректным.

Прогностические возможности указанного метода ограничены однократностью измерения тестовых показателей .X1, Х2 ..., Xk. В силу однократности измерения этот метод оказывается эффективным опять-таки только по отношению к самым универсальным и статическим показателям (таким, например, как интегральные свойства темпера­мента или нервной системы), обеспечивающим очень грубый, веро­ятностный, приближенный прогноз.

В некоторых случаях эффективность этого метода может суще­ственно повыситься, если использовать хотя бы двукратное (с неболь­шим интервалом в две-три недели) измерение системы показателей Х1 Х2,..., Xk. Уже таким способом можно, например, учесть вклад фак­тора «усвоение знаний» в прогнозирование мотивационной вовлечен­ности (уровня интереса) студента в свою специальность. Повторное измерение (например, через месяц после начала обучения в вузе) по­зволяет выявить, в каком направлении действует фактор «усвоение знаний» в своем влиянии на уровень интереса данного студента: мо­жет оказаться, что в результате разнонаправленного действия этого фактора немало пар студентов уже через месяц поменяются местами в ранговом ряду по уровню интереса (Ха< Хb). В этом случае в урав­нение (3.5.1) целесообразно ввести не статический показатель Xi a простейший динамический показатель

Хi, =
. Кроме того, не исключена возможность одновременного использования в уравнении (3.5.1) и статических Xi. и динамических
Хi. показателей; тогда разра­ботанная модель прогноза будет учитывать как достигнутый уровень (экстраполировать статику), так и намечающиеся тенденции (экстра­полировать тенденции).

Приведем еще один содержательный пример. Многочисленные эмпирические исследования по прогнозированию супружеской со­вместимости (Обозов Н. Н., 1979) показали неудовлетворительно низкий уровень надежности прогноза на основе таких показателей, как однократно измеренный уровень сходства (темперамента, моти­вов, интересов, ценностных ориентации) или взаимодополнитель­ности психических свойств будущих супругов. Но эту надежность можно существенно повысить, если ввести в уравнение (3.5.1) по­казатели типа

Х.. В данном случае содержательно-психологичес­кий смысл этих показателей будет заключаться в следующем: они указывают на то, в каком направлении действует на уровень сход­ства (совместимости) опыт взаимодействия будущих супругов. По­тенциально несовместимые супруги в ходе взаимодействия (за период помолвки), как правило, дивергируют в своих показателях (на­пример, имеющиеся незначительные акцентуации характера взаим­но усиливаются). И наоборот, потенциально совместимые супруги могут очень быстро конвергировать: оказывается достаточным про­ведение одного-двух обсуждений с участием психолога по спорным вопросам, чтобы сблизиться в представлениях о желаемом семей­ном укладе и образе жизни.

Более сложные математические методы прогнозирования (напри­мер, учитывающие циклическую динамику объектов) пока еще редко используются в психодиагностике, так как требуют частых многократ­ных измерений системы тестовых показателей, что оказывается не­возможным по чисто практическим причинам. Тем не менее уже се­годня можно твердо констатировать недостаточность линейных мо­делей прогнозирования. Для ознакомления с рядом других подходов к прогнозированию мы рекомендуем психологам обратиться к руко­водству «Рабочая книга по прогнозированию» (М., 1982).

Остановимся теперь более подробно на подходе, который ныне представляет собой реальную альтернативу ограниченным линей­ным статистическим моделям и позволяет строить эффективный прогноз для более сложных зависимостей между прогнозируемыми (зависимыми) и прогнозирующими (независимыми) переменными. Этот подход, по традиции, принято называть распознаванием обра­зов, так как разработка его математического аппарата была во мно­гом стимулирована инженерными задачами конструирования искус­ственных систем зрения, слуха, других органов чувств (Распознава­ние образов. М., 1970).