Смекни!
smekni.com

Вобзоре рассмотрены история и современные направления исследований и разработок в области полимеризуемых стоматологических адгезивов и композитов. (стр. 10 из 15)

R1

CH3

C2H5

C2H5

Фенил

CH=CH2

3-CH3-фенил

4-CH3-фенил

R2

CH3

CH3

H

H

CH3

H

H

30

a

b

c

d

e

f

g

Рисунок 16. Бицикличные 2-метилен-1,3-диоксепаны [38].

Более стабильными в присутствии воды оказались циклические аллилсульфиды. Например, 6-метилен-1,4-дитиэпан или 3-метилен-1,5-дитиациклооктан (структуры 32 и 33 на рис. 17, соответственно) спокойно выдерживали воздействие воды и кислот. Циклические аллилсульфиды полимеризовались с раскрытием кольца по свободно-радикальному механизму, давая нерастворимые кристаллические высокомолекулярные гомополимеры. Жидкие 6-метилен-1,4-дитиэпаны (структуры 34-33 на рис. 18) приводят к сшитым полимерам.

Рисунок 17. Свободно-радикальная полимеризация с раскрытием кольца циклических аллилсульфидов [38].

Рисунок 18. Структуры жидких 6-метилен-1,4-дитиэпанов 34-36 [38].

Главной проблемой применения циклических аллилсульфидов в стоматологических материалах является значительно меньшая реакционная способность этих мономеров по сравнению с метакрилатами и слишком гибкая аморфная структура, образующихся полимеров.

Винилциклопропаны

2-Винилциклопропаны (структуры 37-39 на рис. 19) также известны как свободно-радикально полимеризуемые мономеры с низкой усадкой [38]. Температура стеклования 1,1-дизамещенных 2-винилциклопропанов зависит от природы заместителей (рис. 19).

Мономер

37

38

39

R1

C2H5

C2H5

Фенил

R2

C2H5

Фенил

Фенил

Температура стеклования полимера (Tg, 0C)

40

54

77

Рисунок 19. Структуры мономеров и температура стеклования полимеров 1,1-дизамещенных 2-винилциклопропанов [38].

Температура стеклования полимеров для стоматологического применения должна быть выше 600С. Однако, заместители, наряду с температурой стеклования, увеличивают и температуру плавления исходных мономеров. Менее вязкими мономерами, способными давать сшитые полимеры нерастворимые в органических растворителях, оказались структуры 40-44 (рис. 20). К тому же некоторые из них (41) показали расширение объема при полимеризации в массе, которое можно объяснить переходом плотной структуры кристаллического мономера в менее сжатую структуру аморфного полимера.

Рисунок 20. Сшиваемые 1,1-дизамещенные 2-винилциклопропаны 40-44 [38].

Сшиваемые винилциклопропаны оказались менее реакционноспособны, чем метакрилаты. Поэтому были синтезированы гибридные мономеры (структуры 45-47 на рис. 21), содержащие и винилциклопропильные и метакрилатные группы [48].

Рисунок 21. Сшиваемые гибридные 2-винилциклопропаны 45-47 [38].

Сшиваемые винилциклопропаны показали меньшую, чем метакрилаты, токсичность, были стабильны в присутствии влаги, наполнителей, кислотных и основных примесей. Однако их применение в стоматологических составах требует более тщательного изучения.

Резюмируя все вышесказанное можно сделать вывод, что циклические мономеры, полимеризующиеся с раскрытием кольца с низкой усадкой или расширением, до сих пор не получили практического применения в коммерческих пломбировочных материалах. Главная причина в том, что они не удовлетворяют основным требованиям, предъявляемым к композитным восстановительным материалам.

Жидкокристаллические, разветвленные и дендриновые мономеры

Жидкокристаллические мономеры

В дополнение к полимеризации циклических мономеров с раскрытием кольца другой основной концепцией достижения низко усадочной фотополимеризуемой системы является идея использования предварительно упорядоченных жидкокристаллических или разветвленных сшивателей. Благоприятными свойствами этих мономеров с «полотняной» молекулярной структурой являются относительно низкие вязкость и полимеризационная усадка предварительно упорядоченных мономеров, по сравнению с соответствующими линейными мономерами. Полимеризация жидкокристаллических диакрилатов происходит с высокой скоростью, приводя к высокой конверсии двойных связей и низкой объемной усадке. Примеры таких мономеров представлены на рис. 22 (структуры 48,49). Объемное сжатие при полимеризации мономера 48 составило 2,1%, для мономера 49 около 1,3% [38, 49].

Рисунок 22. Жидкокристаллические при температуре близкой к комнатной ди(мет)акрилаты 48 и 49 [38].

Проблемой применения жидкокристаллических мономеров является высокая температура плавления. Для ее решения синтезированы разветвленные бисметакрилаты (структуры 50 и 51 на рис. 23), которые являются жидкокристаллическими при комнатной температуре.

Рисунок 23. Разветвленные жидкокристаллические при комнатной температуре бисметакрилаты 50 и 51 [38].

Жидкокристаллические при комнатной температуре мономеры очень перспективны в качестве матричных мономеров для фотополимеризуемых композитов, благодаря их низкой полимеризационной усадке, относительно низкой вязкости и высокой конверсии двойных связей. Однако, другие компоненты композитов (сомономеры, наполнители и т.д.) могут отрицательно влиять на образование жидких кристаллов. Кроме того, синтез жидкокристаллических мономеров является дорогим, а образуемая полимерная сетка имеет тенденцию к повышенной гибкости, что может снижать механические свойства композитов.

Разветвленные и дендриновые мономеры

С целью упрощения синтеза были разработаны высоко разветвленные не жидко-кристаллические мономеры для применения в стоматологических композитах. Обычной реакцией Михаэйля при добавлении технического 3,(4),8,(9)-бис-(аминометил)-трициклодекана к 2-(акрилоилокси)этилметакрилату синтезировали разветвленный метакрилат (структура 52 на рис. 24) с молекулярной массой 931 г/моль и вязкостью около 150 мПа×с, полимеризационной усадкой 2,9%, что можно сопоставить с соответствующими характеристиками Bis-GMA (512 г/моль, 1000 мПа×с, 6%).

Рисунок 24. Разветвленный низковязкий тэтраметакрилат 52 [38].

К сожалению, механические свойства композитов на основе подобных мономеров оказались недостаточными. Поиск путей улучшения механических характеристик сверх разветвленных мономеров привел к синтезу дендритичных метакрилатов с количеством метакрилатных групп от 32 до 128 на молекулу [38, 50-53]. Несмотря на огромную молекулярную массу (до 30 000 и более) таких полифункциональных метакрилатов, они оставались жидкостями с относительно низкой вязкостью. Дендритичные сшивающие полифункциональные метакрилаты синтезировали присоединением Михаэйля аминофункциональных поли(пропиленимин)дендримеров (компании DSM, Нидерланды) к 2-(акрилоилокси)этилметакрилату.

Композиты с количеством наполнителя 80%, матрица которых состояла из 20% дендритичных метакрилатов, 40% Bis-GMA, 20% UDMA и 20% TEGDMA, представляли собой пасту напоминающую сухой материал. Однако, под давлением она приобретала текучую консистенцию и могла применяться аналогично амальгаме. Такое реологическое поведение объясняется тем, что дендритичные метакрилаты действуют как молекулярная губка для мономера разбавителя. При давлении или выдавливании дендримеры выделяют мономер [38, 54].

Недавно были синтезированы новые низковязкие и малоусадочные сверх разветвленные алифатические и ароматические полиэфиры, используя триметилолпропан и 2,2-бис-гидроксиметилпропионовую кислоту, либо на основе 2,2-бис-(4-гидроксифенил)- пивалоновой кислоты, которые далее этерифицировали смесью метакриловой и изо-маслянной кислот [55].

Таким образом, благодаря относительно низкой вязкости и отличному прониканию в образующуюся полимерную сетку, сверх разветвленные или дендритичные метакрилаты являются перспективными мономерами для получения низко усадочных композитов. Однако, для успешного применения в стоматологии, должны быть синтезированы новые мономеры такого типа, образующие полимерные сетки с улучшенными механическими характеристиками.

Компомеры

Компомеры являются одним из типов фотоотверждаемых стоматологических пломбировочных композитных материалов, также известных как композитные смолы, модифицированные поликислотами. Термин «компомер», предложенный компанией Dentsply [21], происходит от сочетания слов КОМПОзит и стекло-ионоМЕР и используется для описания безводных, однокомпонентных, светоотверждаемых композитов, содержащих кислотные метакриловые мономеры, армированные силанизированными наполнителями на основе кальций-, стронций- или барий-алюмофторсиликатных стекол, применяемых в стекло-иономерах. Компомеры были разработаны для улучшения физических свойств и клинического применения стекло-иономерных цементов. Один из первых компомеров Dyract содержал в качестве матричного мономера – продукт реакции двух молей 2-гидроксиэтилметакрилата с бутан 1,2,3,4-тэтракарбоновой кислотой, так называемый ТСВ мономер (см. табл.6) [20]. Общей характеристикой структуры предложенных мономеров для компомеров является то, что они содержат в молекуле как метакрилатные, так и кислотные группы [56-58] (см. табл.6 – ТСВ, BPDM, BTDM, STDM, OEMA, OPMA). Кроме этих диметакрилатов алфатических и ароматических тэтракарбоновых кислот, в качестве мономеров для компомеров использовались диметакрилаты циклоалифатических и гетероциклических тэтракарбоновых кислот (структуры 55 и 56 на рис. 25) и олигомерная поли(акриловая кислота), модифицированная глицидилметакрилатом [38, 58] (рис. 25).